摘要 | 第1-5页 |
Abstract | 第5-6页 |
目录 | 第6-7页 |
引言 | 第7-8页 |
第一章 基本引理 | 第8-23页 |
引理 1 Fredholm 定理 | 第8-9页 |
引理 2 齐次周期 Riemann 边值 | 第9-10页 |
引理 3 非齐次周期 Riemann 边值 | 第10-12页 |
引理 4 (一般的奇异积分方程的 Noether 定理) | 第12-16页 |
引理 5 (一般的奇异积分方程的 Noether 定理) | 第16-17页 |
引理 6 推广的 Plemelj 公式 | 第17-23页 |
第二章 Hilbert 核奇异积分方程的正则化 | 第23-35页 |
·Hilbert 核奇异积分方程问题提出 | 第23-24页 |
·Hilbert 核奇异积分方程问题求解 | 第24-35页 |
·Hilbert 核奇异积分方程的正则化 | 第24-35页 |
第三章 Hilbert 核奇异积分方程的 Noether 定理 | 第35-47页 |
·Hilbert 核奇异积分方程的 Noether 定理的提出 | 第35-37页 |
·Hilbert 核奇异积分方程的 Noether 定理的证明 | 第37-47页 |
结论 | 第47-49页 |
参考文献 | 第49-51页 |
攻读硕士学位期间发表的主要科研成果 | 第51-53页 |
后记 | 第53页 |