首页--工业技术论文--电工技术论文--独立电源技术(直接发电)论文

锂离子导体的第一性原理研究

摘要第6-8页
ABSTRACT第8-10页
Chapter 1 Lithium Ion Batteries第14-38页
    1.1 Lithium ion batteries第14-15页
    1.2 Cathodes第15-20页
        1.2.1 Layer oxide materials第16-18页
        1.2.2 Spinel oxide Materials第18页
        1.2.3 Olivine第18-20页
    1.3 Anode Materials第20-22页
        1.3.1 Tin and Silicon第20页
        1.3.2 Graphite第20-21页
        1.3.3 Spinel Anode Materials第21-22页
    1.4 Superionic Conductors第22-38页
        1.4.1 Perovskite structures第23-24页
        1.4.2 Nasicon-type conductors第24-26页
        1.4.3 Garnet type conductors第26-28页
        1.4.4 Phosphorus and Sulphide based conductors第28-31页
        1.4.5 Antiperovskite and Anti-spinel第31-34页
        1.4.6 Framework superionic conductor第34-35页
        1.4.7 Chlorides and Bromides based Superionic conductors第35-38页
Chapter 2 Density Functional Theory (DFT) and Ab Initio Molecular Dynamics(AIMD) Simulations第38-56页
    2.1 Hartree Fock Approximation第38-39页
    2.2 Density Functional Theory and mathematical formulism第39-45页
        2.2.1 Hohenberg and Kohn theorems第40页
        2.2.2 Kohn-sham energy第40-41页
        2.2.3 Exchange-correlation (XC) Potential and functional第41-42页
        2.2.4 Local density approximation (LDA)第42-43页
        2.2.5 Generalized gradient approximation (GGA)第43-44页
        2.2.6 Hybrid functionals第44-45页
    2.3 Stability第45-49页
        2.3.1 Phase Stability第46-47页
        2.3.2 Electrochemical stability第47-48页
        2.3.3 Nudged Elastic Band (NEB) and Climbing Image Nudged Elastic Band (CI-NEB) method第48-49页
    2.4 Molecular dynamics第49-56页
        2.4.1 Ab initio molecular dynamic simulations第50-53页
        2.4.2 Probability density and van Hove correlation function第53-56页
Chapter 3 Ion Conductivity Enhancement in Anti-Spinel Li_3OBr with IntrinsicVacancies第56-72页
    3.1 Introduction第56-58页
    3.2 Computational Method第58页
    3.3 Results and Discussion第58-71页
        3.3.1 Stability of Li_3OBr structures第58-63页
        3.3.2 Electrochemical window第63-65页
        3.3.3 Li ion diffusion and ionic conductivity第65-71页
    3.4 Conclusion第71-72页
Chapter 4 Theoretical Insights into Li-Ion Transport in LiTa_2PO_8第72-94页
    4.1 Introduction第72-73页
    4.2 Computational Details第73-74页
    4.3 Results and Discussion第74-93页
        4.3.1 Geometric and electronic structures第74-81页
        4.3.2 Phase stability第81-82页
        4.3.3 Electrochemical stability第82-86页
        4.3.4 Diffusion and ionic conductivity第86-88页
        4.3.5 AIMD with different initial structures第88-93页
    4.4 Conclusions第93-94页
Chapter 5 Theoretical Insights on the Role of Alkali in Alkali-Doped SrSiO_3第94-118页
    5.1 Introduction第94-97页
    5.2 Computational Method第97-98页
    5.3 Results and Discussion第98-116页
        5.3.1 Structure and Stability第98-100页
        5.3.2 Mechanical properties第100-103页
        5.3.3 Mean Square displacement, Diffusion and ionic conductivity第103-106页
        5.3.4 Deep analysis of MSD and conductivity第106-111页
        5.3.5 Trajectory and probability density function of Na~+ and O~(2-)第111-112页
        5.3.6 Thermal expansion coefficient第112页
        5.3.7 Discussion第112-116页
    5.4 Conclusion第116-118页
References第118-136页
Acknowledgement第136-138页
Publications第138页

论文共138页,点击 下载论文
上一篇:中国女排大赛成绩动态演变影响因素及评价模型构建研究--基于竞技能力层面分析
下一篇:多孔贵金属合金纳米材料的制备及其光学/电催化性能研究