首页--工业技术论文--无线电电子学、电信技术论文--通信论文--通信理论论文

The Quadratic Minimal Spanning Tree Problem and Related Topics

DEDICATION第4-5页
ACKNOWLEDGEMENT第5-8页
1. INTRODUCTION第8-15页
2. FORMULATION AND COMPLEXITY第15-28页
    2.1. Formulation of the Quadratic Minimal Spanning Tree Problem (QMST)第15-18页
    2.2. Motivation of our Study第18-20页
    2.3. NP-Completeness of the QMST第20-25页
    2.4. NP-Completeness of the AQMST第25-28页
3. BOUNDING TECHNIQUES FOR THE QMST第28-51页
    3.1. Linear Programming Approach第28-31页
    3.2. Lagrangean Relaxation Approach第31-32页
    3.3. The Decomposition Bound (DB)第32-33页
    3.4. The Parametrized Bound (PB)第33-38页
    3.5. The Leveling Method for Searching the Best PB第38-40页
    3.6. Computational Experiments第40-51页
4. A BOUNDING TECHNIQUE FOR A CLASS OF QUADRATIC 0-1 PROGRAMS第51-63页
    4.1. Brief Introduction of the Problem第51-52页
    4.2. The Parametrized Lower Bound第52-56页
    4.3. A Sufficient Condition for the Best Parameters第56-58页
    4.4. Leveling Algorithm and Its Convergence第58-63页
5. ON THE LOWER BOUND OF THE QUADRATIC ASSIGNMENT PROBLEM (QAP)第63-81页
    5.1. Existing Bounding Techniques第63-71页
    5.2. Application of the Leveling Method to the QAP第71-75页
    5.3. Comparisons第75-81页
6. SOLUTION TECHNIQUES FOR THE QMST第81-102页
    6.1. General Description第81-83页
    6.2. Branch-and-Bound Algorithm Ⅰ (with decomposition bounds)第83-85页
    6.3. Branch-and-Bound Algorithm Ⅱ (with parametrized bounds)第85-90页
    6.4. Branch-and-Bound Algorithm Ⅲ (for the Adjacent-only QMST)第90-93页
    6.5. Heuristic Algorithms第93-98页
    6.6. Computational Experiments第98-102页
7. CONCLUSIONS第102-106页
APPENDIX A. Network Terminology第106-108页
APPENDIX B. Efficient Algorithms for Solving the MST第108-110页
APPENDIX C. Formulations of the QAP and the KBP第110-112页
APPENDIX D. Test Problems for Section 5.3第112-119页
BIBLIOGRAPHY第119-124页

论文共124页,点击 下载论文
上一篇:1.原发性甲状旁腺功能亢进症的临床表现 2.北京地区汉族年轻妇女和原发性甲状旁腺功能亢进症患者钙敏感受体基因多态性的分布及其与血钙水平相关性的研究--附235例分析
下一篇:皮肤分支杆菌感染一式多元化快速分子诊断方法的研究及其在临床中的应用