首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--信息处理(信息加工)论文--模式识别与装置论文

基于正则化的非线性扩散模型的超分辨率方法

摘要第4-5页
Abstract第5-6页
Chapter 1 Introduction第13-24页
    1.1 Synopsis第13-14页
    1.2 Background of the Study第14-18页
        1.2.1 What is resolution?第14-15页
        1.2.2 Super-resolution imaging第15-18页
    1.3 Related works and their limitations第18-20页
    1.4 Objectives of the Research第20-21页
    1.5 Significance of the Study第21-22页
    1.6 Thesis outline and contributions第22-24页
Chapter 2 Multiframe super-resolution image degradation model第24-43页
    2.1 Introduction第24-26页
    2.2 Image degradation model第26-28页
    2.3 Regularization of the multiframe super-resolution problem第28-35页
        2.3.1 Basics of inverse problems第28-29页
        2.3.2 Regularization第29-35页
    2.4 Comparisons of the classical regularizing functionals第35-41页
    2.5 Summary第41-43页
Chapter 3 Super-resolution methods based on the variable exponent nonlin-ear diffusion models第43-91页
    3.1 Introduction第43页
    3.2 Motion estimation第43-45页
    3.3 Proposed methods第45-76页
        3.3.1 Super-resolution method based on the adaptive Perona-Malik diffu-sion model第45-55页
        3.3.2 Super-resolution method based on the adaptive Charbonnier diffusionmodel第55-61页
        3.3.3 Super-resolution method based on the non-standard anisotropic diffu-sion model第61-65页
        3.3.4 Super-resolution method based on the adaptive Perona-Malik modeland Papoulis-Gerchberg algorithm第65-76页
    3.4 Experiments第76-82页
        3.4.1 Preliminaries第76-77页
        3.4.2 Experiment 1: Edge detection第77-78页
        3.4.3 Experiment 2: Image denoising第78-82页
        3.4.4 Experiment 3: Super-resolution image reconstruction第82页
    3.5 Results and discussions第82-86页
        3.5.1 Experiment 1: Edge detection第82-85页
        3.5.2 Experiment 2: Image denoising第85页
        3.5.3 Experiment 3: Super-resolution image reconstruction第85-86页
    3.6 Summary第86-91页
Chapter 4 A noise suppressing and edge-preserving multiframe super-resolutionmethod第91-117页
    4.1 Introduction第91-92页
    4.2 Motion estimation第92-95页
    4.3 Proposed smoothing energy functional第95-104页
        4.3.1 Derivations and important properties第95-101页
        4.3.2 Multiframe super-resolution process第101-102页
        4.3.3 Invariance and the regularizing parameter第102-104页
    4.4 Numerical implementation details第104-107页
        4.4.1 Explicit scheme第104-106页
        4.4.2 Additive Operator Splitting (AOS) scheme第106-107页
    4.5 Experiments第107-112页
        4.5.1 Preliminaries第107页
        4.5.2 Experiment 1: Edge detection第107-108页
        4.5.3 Experiment 2: Image denoising第108页
        4.5.4 Experiment 3: Super-resolution image reconstruction第108-112页
    4.6 Results and discussions第112-115页
        4.6.1 Experiment 1: Edge detection第112-113页
        4.6.2 Experiment 2: Image denoising第113页
        4.6.3 Experiment 3: Super-resolution image reconstruction第113-115页
    4.7 Summary第115-117页
Chapter 5 Practical applications of the super-resolution methods第117-123页
    5.1 Introduction第117页
    5.2 Practical applications of the super-resolution methods第117-122页
        5.2.1 Fusion of images第117-118页
        5.2.2 Improving the spatial resolution of mammograms in X-Ray imaging第118-119页
        5.2.3 Improving the quality of hyperspectral images第119-120页
        5.2.4 Resolution enhancement of scenes on the web第120-121页
        5.2.5 Zooming of regions of interest (ROI) in the scene第121页
        5.2.6 Lowering the transmission costs of videos from television broadcast-ing stations第121页
        5.2.7 Improving the quality of consumer images and videos第121-122页
    5.3 Summary第122-123页
结论第123-126页
Conclusion第126-130页
References第130-144页
List of Publications第144-147页
Acknowledgement第147-149页
Resume第149-151页

论文共151页,点击 下载论文
上一篇:区间型交叉效率评价方法与加性多阶段DEA模型研究
下一篇:基于信号处理新方法的机动目标ISAR成像算法研究