中文摘要 | 第1-6页 |
ABSTRACT | 第6-9页 |
第一章 引言 | 第9-17页 |
·课题研究背景与意义 | 第9-10页 |
·DPS 降维方法 | 第10-13页 |
·主元分析方法 (PCA) | 第11-12页 |
·核主元分析方法 (KPCA) | 第12-13页 |
·DPS 神经网络建模 | 第13-14页 |
·传感器位置优化配置国内外研究现状 | 第14-15页 |
·本文主要研究工作 | 第15-17页 |
第二章 基于 KPCA 的 ARX 分布参数系统建模 | 第17-33页 |
·系统描述 | 第17-18页 |
·GA 优化的 KPCA 模型降维 | 第18-24页 |
·基于 KPCA 方法的时空分解 | 第18-20页 |
·基于 KPCA 方法的降维原理 | 第20-23页 |
·基于 KPCA 方法的降维实现方法 | 第23页 |
·GA 优化 | 第23-24页 |
·ARX 时间模型辨识 | 第24-26页 |
·仿真研究 | 第26-32页 |
·本章小结 | 第32-33页 |
第三章 PCA ARX-RBF 解耦模型设计 | 第33-47页 |
·非线性抛物 PDE 系统 | 第33-37页 |
·非线性抛物 PDE 系统及其在 Hilbert 空间的描述 | 第33-36页 |
·PCA 时空分解 | 第36页 |
·基于 PCA 时空分解的 ARX 模型辨识 | 第36-37页 |
·RBF 网络非线性建模 | 第37-39页 |
·RBF 网络的结构 | 第37页 |
·RBF 网络的学习过程 | 第37-39页 |
·仿真研究 | 第39-45页 |
·本章小结 | 第45-47页 |
第四章 基于 D-最优试验设计和 GA 的传感器位置优化 | 第47-59页 |
·D-最优试验设计数值方法 | 第47-54页 |
·问题描述 | 第47-49页 |
·D-最优设计准则及其数值设计方法 | 第49-51页 |
·基于 D-最优试验设计的传感器优化研究 | 第51-54页 |
·基于 GA 的传感器位置优化 | 第54-57页 |
·MATLAB 的 GA 工具箱使用简介 | 第54-55页 |
·仿真研究 | 第55-57页 |
·本章小结 | 第57-59页 |
第五章 总结与展望 | 第59-61页 |
·工作总结 | 第59-60页 |
·工作展望 | 第60-61页 |
参考文献 | 第61-67页 |
致谢 | 第67-69页 |
攻读学位期间发表的学术论文目录 | 第69-70页 |