基于SVM和词特征的新词识别研究
中文摘要 | 第1-6页 |
ABSTRACT | 第6-12页 |
第一章 绪论 | 第12-19页 |
·研究背景和意义 | 第12-13页 |
·新词的定义 | 第13-14页 |
·新词的特征 | 第14页 |
·新词识别的难点 | 第14-15页 |
·新词识别的研究现状 | 第15-17页 |
·基于规则的方法 | 第15-16页 |
·基于统计的方法 | 第16页 |
·基于规则和统计结合的方法 | 第16-17页 |
·本文的工作和结构 | 第17-18页 |
·本章小结 | 第18-19页 |
第二章 机器学习和支持向量机 | 第19-32页 |
·机器学习 | 第19-21页 |
·机器学习的概念 | 第20页 |
·机器学习的结构 | 第20-21页 |
·SVM 理论 | 第21-31页 |
·线性情况 | 第22-27页 |
·问题转化 | 第22-25页 |
·约束条件 | 第25-27页 |
·非线性情况 | 第27-31页 |
·核函数 | 第27-28页 |
·核函数选择 | 第28页 |
·松弛变量 | 第28-30页 |
·惩罚因子及选取 | 第30-31页 |
·多元分类 | 第31页 |
·本章小结 | 第31-32页 |
第三章 基于语料库的相关工作 | 第32-40页 |
·实验环境 | 第32页 |
·语料库选取 | 第32页 |
·语料库处理 | 第32-37页 |
·语料库分词 | 第33页 |
·模拟新词 | 第33-34页 |
·特征选取 | 第34-37页 |
·支持向量 | 第37页 |
·约束条件 | 第37-38页 |
·约束条件 1 | 第37-38页 |
·约束条件 2 | 第38页 |
·约束条件与支持向量机结合 | 第38-39页 |
·本章小结 | 第39-40页 |
第四章 基于 SVM 和词特征的新词识别系统实现 | 第40-54页 |
·具体实现流程 | 第42-44页 |
·实现流程 | 第42-43页 |
·程序流程 | 第43-44页 |
·规则过滤 | 第44-45页 |
·实验结果与评测 | 第45-53页 |
·分析方法 | 第45-46页 |
·实验结果与分析 | 第46-47页 |
·程序运行实例及举例 | 第47-53页 |
·程序运行实例 | 第47-52页 |
·举例 | 第52-53页 |
·本章小结 | 第53-54页 |
第五章 总结与展望 | 第54-56页 |
·总结 | 第54页 |
·下一步工作及展望 | 第54-56页 |
参考文献 | 第56-58页 |
攻读硕士期间发表的论文 | 第58-59页 |
致谢 | 第59页 |