木质纤维素超低酸水解过程及动力学研究
摘要 | 第1-6页 |
Abstract | 第6-8页 |
目录 | 第8-11页 |
第1章 文献综述 | 第11-25页 |
·前言 | 第11-12页 |
·秸秆的结构及组成 | 第12-15页 |
·纤维素 | 第13-14页 |
·半纤维素 | 第14-15页 |
·木质素 | 第15页 |
·秸秆的水解 | 第15-20页 |
·酶水解 | 第16页 |
·浓酸水解 | 第16-17页 |
·稀酸水解 | 第17-18页 |
·超临界水解 | 第18页 |
·超低酸水解 | 第18-19页 |
·稀酸水解的影响因素 | 第19-20页 |
·木质纤维素水解的动力学 | 第20-22页 |
·本工作的意义和主要研究内容 | 第22-25页 |
·本工作的意义 | 第22页 |
·本工作的主要研究内容 | 第22-25页 |
第2章 分析方法 | 第25-31页 |
·产物中液体的分析方法 | 第25-27页 |
·还原糖的分析方法–DNS 法 | 第25-27页 |
·DNS 比色法测定原理 | 第25页 |
·DNS 溶液的制备 | 第25-26页 |
·DNS 标准曲线的绘制 | 第26页 |
·水解液还原糖得率的测定 | 第26-27页 |
·单糖和低聚糖的测定–高效液相色谱法 | 第27页 |
·产物中固体的分析方法 | 第27-31页 |
·组分分析–范氏分析法 | 第27-29页 |
·原理 | 第27-28页 |
·试剂的配制 | 第28页 |
·操作步骤 | 第28-29页 |
·表观分析–扫描电镜分析 SEM 法 | 第29页 |
·热重分析–TGA | 第29页 |
·结晶度的分析–红外光谱法及 X-射线衍射法 | 第29-31页 |
·红外光谱法 | 第29-30页 |
·X-射线衍射法 | 第30-31页 |
第3章 农作物秸秆超低酸水解的研究 | 第31-55页 |
·实验原料及仪器 | 第32页 |
·实验原料 | 第32页 |
·实验仪器 | 第32页 |
·实验装置及流程 | 第32-33页 |
·实验方法 | 第33-34页 |
·农作物秸秆的预处理 | 第33页 |
·农作物秸秆含水量的测定 | 第33-34页 |
·农作物秸秆超低酸水解步骤 | 第34页 |
·实验结果与讨论 | 第34-52页 |
·超低酸水解对还原糖的影响–湖北稻草秸秆 | 第34-39页 |
·搅拌转速的影响 | 第34-35页 |
·酸浓度的影响 | 第35-36页 |
·液固比的影响 | 第36-38页 |
·温度、时间的影响 | 第38-39页 |
·不同地区不同种类农作物秸秆超低酸水解的研究 | 第39-44页 |
·超低酸水解产物 HPLC 分析 | 第44-45页 |
·秸秆超低酸水解后结构与性能的变化 | 第45-52页 |
·水解前后秸秆 SEM 分析 | 第45-46页 |
·水解前后秸秆的热学性能分析 | 第46-47页 |
·水解前后秸秆的红外光谱分析 | 第47-51页 |
·水解前后秸秆的 X-衍射分析 | 第51-52页 |
·本章小结 | 第52-55页 |
第4章 农作物秸秆超低酸水解反应的动力学研究 | 第55-67页 |
·酸水解动力学模型的简述 | 第55页 |
·模型的建立 | 第55-57页 |
·模型参数的拟合方法 | 第57-61页 |
·模型的计算与验证 | 第61-63页 |
·模型的应用与讨论 | 第63-65页 |
·粒径对还原糖浓度的影响 | 第63-65页 |
·颗粒的均匀度对还原糖浓度的影响 | 第65页 |
·本章小结 | 第65-67页 |
第5章 结论与建议 | 第67-71页 |
·结论 | 第67-69页 |
·建议 | 第69-71页 |
参考文献 | 第71-79页 |
硕士期间发表的论文 | 第79-81页 |
致谢 | 第81页 |