首页--工业技术论文--自动化技术、计算机技术论文--自动化基础理论论文--人工智能理论论文

改进的引力搜索算法及应用

摘要第7-14页
Abstract第14-15页
CHAPTER 1: INTRODUCTION第20-50页
    1.1 Background第20-23页
        1.1.1 Adaptive attributes of a swarm第21页
        1.1.2 Functioning process of the swarm第21-22页
        1.1.3 Attributes of feedback in the swarm第22页
        1.1.4 The effect of random movement of particles in the swarm第22-23页
        1.1.5 Collectivity of a swarm第23页
    1.2 Variants of swarm intelligence: Ant colony optimisation第23-30页
        1.2.1 Ant colony optimisation第23-27页
        1.2.2 Ants’ social behaviour第27页
        1.2.3 Artificial ant colony第27-28页
        1.2.4 General process of the ACO第28页
        1.2.5 Artificial pheromone trail第28-29页
        1.2.6 Initial pheromone第29页
        1.2.7 The pheromone update第29-30页
        1.2.8 The elitist strategy for ACO第30页
    1.3 Variants of swarm intelligence: Particle swarm optimisaton第30-36页
        1.3.1 Assumed social behaviour第32-33页
        1.3.2 Components of PSO第33页
        1.3.3 Rules to establish a swarm第33-34页
        1.3.4 Outline of parameters for PSO algorithm第34-35页
        1.3.5 General PSO flowchart第35-36页
        1.3.6 Layout of PSO algorithm第36页
    1.4 Variants of swarm intelligence: Artificial bee colony (ABC)第36-42页
        1.4.1 Artificial bee colony (ABC) algorithm第37-39页
        1.4.2 Implementation procedures of the ABC algorithm第39-41页
        1.4.3 A brief of the ABC search process第41页
        1.4.4 Steps of the ABC algorithm第41-42页
    1.5 Variants of swarm intelligence: Gravitational search algorithm (GSA)第42-44页
        1.5.1 Gravitational force第42-43页
        1.5.2 Basic gravitational search algorithm steps:第43-44页
    1.6 Other forms of swarm intelligence (SI)第44-46页
        1.6.1 Artificial immune systems (AISS):第45页
        1.6.2 Bat algorithm第45页
        1.6.3 Bacterial colony optimisation第45页
        1.6.4 Differential evolution第45-46页
        1.6.5 Artificial fish swarm (AFS)第46页
        1.6.6 Firefly algorithm第46页
    1.7 Research content and the core projects第46-47页
    1.8 Organisation of the entire thesis第47-50页
CHAPTER 2:LITERATURE REVIEW AND APPLICATIONS OF SWARM INTELLIGENCE第50-64页
    2.1 Overview of ant colony optimisation algorithm applications第50-53页
        2.1.1 Scheduling tasks第50-51页
        2.1.2 Assignment and layout problems第51页
        2.1.3 Routing problems第51页
        2.1.4 Solving bio-informatics problems第51-52页
        2.1.5 Solving multi-objective optimisation problems第52-53页
    2.2 Overview of particle swarm optimisation (PSO) applications第53-55页
        2.2.1 Design for power system controller第54页
        2.2.2 Economic dispatch problem第54页
        2.2.3 Neural network training第54-55页
        2.2.4 Hydrocarbon field optimisation第55页
    2.3 Brief literature on artificial bee colony (ABC) optimisation第55-60页
        2.3.1 Training neural networks第56-57页
        2.3.2 Power systems第57-58页
        2.3.3 Image processing第58页
        2.3.4 Software application and engineering第58-59页
        2.3.5 Data mining第59-60页
    2.4 Overview of gravitational search algorithm (GSA) applications第60-64页
CHAPTER 3: IMPROVED OPTIMISATION METHOD FOR IMAGE CLASSIFICATION WITHGRAVITATIONAL SEARCH ALGORITHM第64-88页
    3.1 Motivation第64-69页
        3.1.1 Image features第65-67页
        3.1.2 Feature and classifier第67页
        3.1.3 Feature extraction and selection第67-69页
    3.2 Gravitational search algorithm第69-74页
        3.2.1 Distance between two objects under gravity第69-74页
    3.3 Feature selection with quantum-inspired binary gravitational search algorithm (QBGSA) 55第74-75页
    3.4 The proposed quantum-binary gravitational search algorithm with support vector machine(QBGSA-SVM)第75-80页
        3.4.1 Support vector machine (SVM) classifier第75-79页
        3.4.2 Adoption of radial basis function (RBF)第79页
        3.4.3 Implementation of RBF kernel based SVM classifier第79-80页
    3.5 Experimentation and results第80-88页
        3.5.1 Dataset description第81-82页
        3.5.2 Discussion of the experimental result and conclusion drawn第82-86页
        3.5.3 Recommendation for future work第86-88页
CHAPTER 4: IMPROVED CENTRIPETAL ACCELERATED PARTICLE SWARMOPTIMISATION FOR RELEVANCE FEEDBACK IN MEDICAL IMAGE RETRIEVAL第88-106页
    4.1 Motivation第88-90页
        4.1.1 Layout of centripetal acceleration PSO (CAPSO)第89-90页
    4.2 Improvement of the centripetal–accelerated particles swarm optimisation (ICAPSO)第90-95页
        4.2.1 Fundamentals of CAPSO method第90-92页
        4.2.2 Parameters deduction and implementation in ICAPSO第92-95页
    4.3 Quantum influence on centripetal–accelerated particles第95-98页
        4.3.1 The description of the ICAPSO algorithm第97-98页
    4.4 ICAPSO application in relevance feedback (RF) in medical image retrieval第98-100页
    4.5 Experiment about the ICAPSO method in relevance feedback (RF)第100-104页
        4.5.1 System and dataset description第100-101页
        4.5.2 Explanation of results of the experiment第101-104页
    4.6 Conclusion and recommendation for further study第104-106页
CHAPTER 5:FEATURE SELECTION METHOD BASED ON MULTI-OBJECTIVEOPTIMISATION WITH GRAVITATIONAL SEARCH ALGORITHM第106-126页
    5.1 Motivation第106-108页
        5.1.1 Feature dimension and selection第107-108页
    5.2 Related works on feature selection第108-109页
    5.3 Multi-objective optimisation with GSA第109-111页
        5.3.1 Gravitational search algorithm GSA第110-111页
        5.3.2 Fitness of particles in the solution space第111页
    5.4 Multi-objective gravitational search algorithm and Pareto Front第111-119页
        5.4.1 The primal optimisation process of (FSMOGSA)第113-115页
        5.4.2 Random mutation to generate new agents第115-117页
        5.4.3 Indexed non-dominated solutions (Pareto Front) subsets第117-119页
        5.4.4 The K-Nearest Neighbor (K-NN) classifier第119页
    5.5 Experiment第119-126页
        5.5.1 Conclusion and suggestions for future selection第124-126页
CHAPTER 6: SUMMARY OF WORK AND SUGGESTIONS FOR FUTURE STUDIES第126-130页
    6.1 Summary of work第126-128页
    6.2 Suggestions for future studies第128-130页
Appendix第130-132页
REFERENCES第132-146页
Publications (作者简介及在学期间所取得的研究成果)第146-148页
Acknowledgement第148-149页

论文共149页,点击 下载论文
上一篇:城市物流网络空间结构集聚与扩散的模型和算法研究
下一篇:基于Web文本和知识图谱的实体摘要