首页--工业技术论文--金属学与金属工艺论文--金属学与热处理论文--金属腐蚀与保护、金属表面处理论文--腐蚀的控制与防护论文--金属表面防护技术论文

不锈钢表面纳米复合防护多层涂层的研究

摘要第4-7页
Abstract第7-11页
Chapter 1 Smart and Intelligent Nano-Composite Anti-corrosion coatings第16-71页
    1.1 Introduction第16页
    1.2 Metal Corrosion第16-21页
        1.2.1 Corrosion Protection of SS by Chromates第17-18页
        1.2.2 Green Strategies for Corrosion Protection of SS第18-19页
        1.2.3 Corrosion Protection by Inhibitors第19-20页
        1.2.4 Protective Coatings第20-21页
    1.3 Evolution of Conducting Polymers(CPs)第21-28页
        1.3.1 Intrinsically Conductive Polymer(PANI)第21-23页
        1.3.2 Different States of PANI第23-24页
        1.3.3 Conductive Polymer PANI Based Dispersed Composites第24-25页
        1.3.4 Active Corrosion Protection by PANI第25-27页
        1.3.5 Processing of PANI and its Composites第27-28页
    1.4 Smart and intelligent coatings for corrosion protection第28-30页
    1.5 Self-healing coatings第30-42页
        1.5.1 Extrinsic self-healing第31-36页
        1.5.2 Intrinsic self-healing第36-42页
            1.5.2.1 Self-healing polymers based on reversible reactions第37页
            1.5.2.2 Self-healing from dispersed thermoplastic polymer第37-38页
            1.5.2.3 Ionomeric self-healing materials第38-39页
            1.5.2.4 Self-healing via molecular diffusion第39-42页
    1.6 Super-hydrophobic coatings第42-49页
        1.6.1 Natural super-hydrophobic designs第43-44页
        1.6.2 Theoretical background第44-47页
        1.6.3 Bio-inspired artificial super-hydrophobic anticorrosion coatings第47-49页
    1.7 Methods for the preparation of multilayer "smart"coatings第49-52页
    1.8 Conclusion第52-55页
    References第55-71页
Chapter 2 PANI-PAA Nano-composites as Corrosion Inhibitors for SS第71-101页
    2.1 Introduction第71-72页
    2.2 Experimental Section第72-75页
        2.2.1 Materials and Methods第72页
        2.2.2 Substrate Surface Pretreatment第72-73页
        2.2.3 Synthesis of PANI-PAA Composites第73-74页
        2.2.4 Instrumentation第74-75页
    2.3 Results and Discussion第75-91页
        2.3.1 UV-Vis and FTIR Spectroscopy第75-78页
        2.3.2 Thermogravimetric Analysis第78-79页
        2.3.3 SEM and TEM Observations第79-80页
        2.3.4 Conductive and Electro-active Behavior of the Composites第80-81页
        2.3.5 Corrosion Inhibition Tests第81-91页
            2.3.5.1 Potentiodynamic Polarization Measurements第82-84页
            2.3.5.2 Electrochemical Impedance Spectroscopy Measurements第84-88页
            2.3.5.3 Adsorption Isotherm and Inhibition Mechanism第88-91页
            2.3.5.4 Surface Morphology第91页
    2.4 Conclusion第91-92页
    References第92-101页
Chapter 3 PANI-PAA/PEI Multilayers for Enhanced Corrosion Protection of SS by Spin Coating technique第101-128页
    3.1 Introduction第101-102页
    3.2 Experimental Section第102-106页
        3.2.1 Materials and Methods第102-103页
        3.2.2 Substrate Surface Pre-treatment第103-104页
        3.2.3 Synthesis of PANI-PAA Composites第104页
        3.2.4 Fabrication of PANI-PAA/PEI Multilayer Film第104-105页
        3.2.5 Instrumentation第105-106页
    3.3 Results and Discussion第106-120页
        3.3.1 Characterization of PANI-PAA Composite第106-108页
            3.3.1.1 UV-visible and FTIR Spectra第106-107页
            3.3.1.2 SEM and TEM Observations第107-108页
        3.3.2 Coating Composition and Structure第108-109页
        3.3.3 Profilometry第109-110页
        3.3.4 Surface Morphology第110-112页
        3.3.5 Potentiodynamic Polarization Measurements第112-114页
        3.3.6 Electrochemical Impedance Spectroscopy (EIS) Analyses第114-115页
        3.3.7 EIS Simulations and Protection Mechanism第115-120页
    3.4 Conclusion第120页
    References第120-128页
Chapter 4 Electrolyte diffusion dependent protection mechanism for PANI-PAA/PEI multilayers with tunable thickness第128-155页
    4.1 Introduction第128-129页
    4.2 Experimental Section第129-131页
        4.2.1 Materials and Methods第129-130页
        4.2.2 Substrate Surface Pretreatment第130页
        4.2.3 Fabrication of PANI-PAA/PEI Multilayer Films第130页
        4.2.4 Instrumentation第130-131页
    4.3 Results and Discussion第131-148页
        4.3.1 Coating Composition and Structure第131-133页
        4.3.2 Effect of c and co on Coating Thickness第133-134页
        4.3.3 Effect of c on Surface Morphology of the Coating第134-136页
        4.3.4 Effect of c on Catalytic Redox Behavior of Coatings第136-137页
        4.3.5 XPS Analysis of the Oxide Layer第137-139页
        4.3.6 Effect of c and co on Corrosion Resistance第139-142页
        4.3.7 Effect of Immersion Time on Coating Properties and EIS Simulations第142-146页
        4.3.8 Protection Mechanism第146-148页
    4.4 Conclusion第148-149页
    References第149-155页
Chapter 5 Protective PDDA/PAA multilayers with smart stimuli responsive self-healing ability第155-179页
    5.1 Introduction第155-156页
    5.2 Experimental Section第156-158页
        5.2.1 Materials and Methods第156-157页
        5.2.2 Substrate Surface Pretreatment第157页
        5.2.3 Layer-by-layer(LBL)Assembly第157页
        5.2.4 Instrumentation第157-158页
    5.3 Results and Discussion第158-172页
        5.3.1 Coating Composition and Structure第158-160页
        5.3.2 Ellipsometry第160-161页
        5.3.3 SEM and AFM第161页
        5.3.4 Potentiodynamic Polarization第161-163页
        5.3.5 Optimization of LBL Coating Properties第163页
        5.3.6 Electrochemical Impedance Spectroscopy(EIS)第163-167页
        5.3.7 Self-healing Performance第167-172页
            5.3.7.1 Self-healing Properties of the Coating by ElS第167-169页
            5.3.7.2 Macroscopic and Microscopic Visual Screening第169-170页
            5.3.7.3 Self-healing Mechanism第170-172页
    5.4 Conclusion第172页
    References第172-179页
Chapter 6 Conclusion第179-183页
    6.1 Summary第179-181页
    6.2 Future Perspective第181-183页
攻读博士位期间发表的学术论文第183-184页
ACKNOWLEDGEMENT第184-185页

论文共185页,点击 下载论文
上一篇:大黄不同萃取物对大鼠下丘脑—垂体—卵巢轴毒性的比较研究
下一篇:基于生物效价检测的附子毒效物质辨识与质量控制