致谢 | 第1-6页 |
中文摘要 | 第6-7页 |
ABSTRACT | 第7-10页 |
1 引言 | 第10-14页 |
·研究背景 | 第10-12页 |
·复杂网络 | 第10-11页 |
·半监督学习 | 第11页 |
·社区发现 | 第11-12页 |
·研究意义 | 第12-13页 |
·本文的主要研究内容 | 第13页 |
·本文的组织结构 | 第13-14页 |
2 社区发现方法 | 第14-26页 |
·谱方法 | 第14页 |
·基于局部搜索的社区发现方法 | 第14-17页 |
·Kernighan-Liu算法 | 第14-15页 |
·快速Newman算法 | 第15-16页 |
·Guinera-Amaral算法 | 第16-17页 |
·启发式社区发现方法 | 第17-22页 |
·Maximum Flow Community算法 | 第17-18页 |
·Hyperlink Induced Topic Search算法 | 第18页 |
·Girvan-Newman算法 | 第18-20页 |
·Wu-Huberman算法 | 第20-21页 |
·Clique Percolation Method算法 | 第21-22页 |
·其他社区发现方法 | 第22-24页 |
·Label Propagation Algorithm算法 | 第22-23页 |
·LPA算法的一种改进LPAm | 第23-24页 |
·社区发现方法研究现状分析 | 第24-25页 |
·本章小结 | 第25-26页 |
3 半监督学习 | 第26-34页 |
·半监督学习的历史 | 第26页 |
·半监督学习的基本假设 | 第26-27页 |
·半监督学习方法 | 第27-31页 |
·生成式模型 | 第27-28页 |
·协同训练 | 第28-29页 |
·基于图的半监督学习 | 第29-31页 |
·半监督学习在聚类中的应用 | 第31-32页 |
·一些半监督聚类算法 | 第32-33页 |
·COP-KMENAS算法 | 第32页 |
·CCL算法 | 第32-33页 |
·PC-KMENAS算法 | 第33页 |
·本章小结 | 第33-34页 |
4 一种新的半监督社区发现方法 | 第34-41页 |
·LPAS算法 | 第34-36页 |
·SLPAS算法 | 第36-39页 |
·本章小结 | 第39-41页 |
5 实验及结果分析 | 第41-49页 |
·实验数据 | 第41-42页 |
·人工网络 | 第41页 |
·真实网络 | 第41-42页 |
·实验结果及分析 | 第42-48页 |
·人工网络 | 第42-45页 |
·真实网络 | 第45-48页 |
·本章小结 | 第48-49页 |
6 总结与展望 | 第49-50页 |
·工作总结 | 第49页 |
·工作展望 | 第49-50页 |
参考文献 | 第50-52页 |
作者简历 | 第52-54页 |
学位论文数据集 | 第54页 |