首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--信息处理(信息加工)论文--模式识别与装置论文

Face Recognition and Matching Enhancement Based on Wavelet Transform

摘要第9-11页
ABSTRACT第11-12页
Acknowledgements第13-14页
Table of Contents第14-16页
List of Figures第16-19页
List of Tables第19-20页
Chapter One:Introduction and Literature Survey第20-28页
    1.1 Introduction第20-21页
    1.2 Literature Review第21-25页
        1.2.1 Wavelet Denoising Based Face Recognition Overview第21-22页
        1.2.2 Principal Component Analysis Overview第22-24页
        1.2.3 Scale Invariant Feature Transform Overview第24-25页
    1.3 Recognition Rate and Error Rate第25-26页
    1.4 The dissertation innovation and aim第26页
    1.5 The dissertation contribution and organization第26-28页
Chapter Two:Theoritical Background第28-45页
    2.1 Introduction第28-29页
    2.2 Wavelet Based Face Recognition Techniques第29-30页
    2.3 Subband Face Representation第30-33页
        2.3.1 Wavelet Decomposition第30-32页
        2.3.2 Subband Face reconstruction第32-33页
    2.4 Principal Component Analysis(PCA)第33-35页
    2.5 Scale Invariant Feature Transform (SIFT)第35-44页
        2.5.1 Scale space peak detection第36-39页
        2.5.2 Key Localization第39-40页
        2.5.3 Orientation Assignement第40-41页
        2.5.4 Keypoint Descriptor第41-44页
    2.6 Distance Measures第44-45页
        2.6.1 Euclidean Distance第44页
        2.6.2 Mahalinobis Cosine第44-45页
Chapter Three:Enhancemet of Fcae Recognition Techniques第45-76页
    3.1 Part 1//Wavelet Based Image Denoising to Enhance the Face Recognition Rate第45-54页
        3.1.1 Introduction第45-46页
        3.1.2 A Framework of Denoising the Face Image for Improving the Recognition Rate第46-47页
        3.1.3 Wavelet Based Image Denoising using Single Filter第47-48页
        3.1.4 Face Recognition Algorithm第48页
        3.1.5 Experiments and Results第48-54页
    3.2 Part2//Face Recognition Enhancemet Based on Image File Formats and Wavelet Denoising第54-62页
        3.2.1 Introduction第54-55页
        3.2.2 Face Image Databases第55-56页
            3.2.2.1 FERET Database第55-56页
            3.2.2.2 AT&T ORL Database第56页
        3.2.3 The Proposed Databases and Face Recognition Techniques第56-59页
            3.2.3.1 Image Conversion第57-58页
            3.2.3.2 Image Denoising by Haar wavelet第58-59页
        3.2.4 Experiments and Results第59-62页
    3.3 Part 3//Two adaptive Image Pre-processing Chains for Face Recognition Rate Enhancement第62-73页
        3.3.1 Introduction第62-64页
        3.3.2 The Adaptive Approaches第64-70页
            3.3.2.1 The First Pre-processing Chain第64-68页
                3.3.2.1.1 Haar 10 Denoising Filter第64-66页
                3.3.2.1.2 Image Adjustment第66页
                3.3.2.1.3 Laplacian of Gaussian第66-67页
                3.3.2.1.4 The First Adaptive Approach Procedure第67-68页
            3.3.2.2 The Second Pre-processing Chain第68-70页
                3.3.2.2.1 Image Adjustment and Histogram Equilization第68-69页
                3.3.2.2.2 Haar 10 wavelet Denoising filter第69-70页
                3.3.2.2.3 The Second Adaptive Approach Procedure第70页
        3.3.3 Experiments and Results第70-73页
    3.4 Summery第73-76页
Chapter Four:A novel Face Recognition Approach Based on Single Level WaveletTransform第76-88页
    4.1 Introduction第76-77页
    4.2 Principal Component Analysis (PCA)第77-79页
        4.2.1 Normalization第78页
        4.2.2 Eigenface Matching第78-79页
    4.3 Single Level Wavelet Transform第79页
    4.4 The Framework of the Adaptive Approach第79-82页
        4.4.1 The Adaptive PCA第80-81页
        4.4.2 The proposed Denoised Database第81-82页
    4.5 Experiments and Results第82-86页
    4.6 Summery第86-88页
Chapter five:A Novel Human Face Identification Approach第88-104页
    5.1 Introduction第88-89页
    5.2 Part 1//Adaptive PCA-SIFT based non de-noised database第89-97页
        5.2.1 SIFT Algoritm第89-90页
        5.2.2 SIFT Features Matching第90-91页
        5.2.3 The Proposed Matching System第91-92页
            5.2.3.1 APCA第91页
            5.2.3.2 The Proposed PCA-SIFT第91-92页
            5.2.3.3 Proposed SIFT Features Matching Threshold第92页
        5.2.4 Experiments and Results第92-97页
    5.3 Part 2//Adaptive PCA-SIFT based double wavelet filter第97-103页
        5.3.1 The Proposed Matching Approach第97页
        5.3.2 Image Denoising using Proposed Double Filter第97-99页
            5.3.2.1 Wavelet Filter Used第98页
            5.3.2.2 Image Denoising Algorithm Using the Proposed Filter第98-99页
        5.3.3 Experiments and Results第99-103页
    5.4 Summery第103-104页
Chapter Six:Conclusions and Recommendations第104-108页
    6.1 Conclusions第104-106页
    6.2 Recommendations for Future Works第106-108页
References第108-116页
攻读博士学位期间参加的科研项目第116-117页
攻读博士学位期间完成的论文第117页

论文共117页,点击 下载论文
上一篇:An Analysis of the Farmer Technology Acceptance Model in Understanding FarmersBehavioral Intention to Use Ict Based Microfinance Platform:Empirical Evidence from Bangladesh and China
下一篇:Rattin拮抗Aβ31-35神经毒性作用的行为学、电生理和分子机制研究