首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机软件论文--程序设计、软件工程论文--程序设计论文

动态数据流挖掘关键技术研究

摘要第7-9页
Abstract第9-10页
List of Symbols第17-18页
Chapter 1 Introduction第18-26页
    1.1 Background第18-19页
    1.2 Motivation第19-21页
    1.3 Data Stream Model第21-22页
    1.4 Objectives of Dissertation第22-23页
    1.5 Significance of Research第23页
    1.6 Dissertation Outline第23-26页
Chapter 2 Related Work第26-56页
    2.1 Data Mining第26页
    2.2 Data Classification第26-32页
        2.2.1 Conventional Classification Methods第27-28页
        2.2.2 Data Streams Classification Methods第28-32页
    2.3 Data Clustering第32-54页
        2.3.1 Distance Metric第33-34页
        2.3.2 Evaluation Measures第34-35页
        2.3.3 Classical Clustering Algorithms第35-46页
        2.3.4 Data Stream Clustering第46-54页
    2.4 Capturing Concepts from Evolving Data Stream第54-55页
    2.5 Summary第55-56页
Chapter 3 Data Stream Classification with Strict Probabilistic Bound第56-66页
    3.1 Overview第56-58页
    3.2 Hoeffding and Empirical Bernstein Bound第58-59页
    3.3 Empirical Bernstien Tree Algorithm(EBT)第59-61页
    3.4 Experimental Analysis第61-65页
        3.4.1 Datasets第61页
        3.4.2 Parameter Settings第61-62页
        3.4.3 Evaluation on Real and Synthetic Datasets第62-65页
    3.5 Summary第65-66页
Chapter 4 Classification for Partially-Labeled Data Streams第66-81页
    4.1 Overview第66-67页
    4.2 Related Work第67-70页
    4.3 Classification Framework for Partially Labeled Data Stream第70-75页
        4.3.1 Problem Statement第70-71页
        4.3.2 Labeling Technique for LLSC第71-73页
        4.3.3 Algorithm Description第73-75页
    4.4 Experimental Results for LLSC第75-80页
        4.4.1 Accuracy Comparison for Varying Window Sizes第75页
        4.4.2 Accuracy Comparison for Varying Label Percentage第75-79页
        4.4.3 Time Comparison for Varying Label Percentage第79-80页
        4.4.4 Time Comparison for Varying Dimensions第80页
    4.5 Summary第80-81页
Chapter 5 LLSC~(+1):An improved Classification Technique for Partially Labeled Data Stream第81-93页
    5.1 Labeling Technique for LLSC~(+1)第81-82页
    5.2 Clustering of gridCells第82-83页
    5.3 Algorithm Description第83-86页
    5.4 Experimental Results第86-91页
        5.4.1 Accuracy Comparison of LLSC~(+1) for Varying Window Size第86页
        5.4.2 Accuracy Comparison of LLSC~(+1) for Varying Label Percentage第86-89页
        5.4.3 Computational Time Comparison of LLSC~(+1) for Varying Label Per-centage第89页
        5.4.4 Computational Time Comparison of LLSC~(+1) for Varying Dimensions第89-91页
    5.5 Summary第91-93页
Chapter 6 On Demand Classification for Unlabeled Data Stream第93-117页
    6.1 Overview第93-95页
    6.2 Related Work第95-97页
    6.3 Background第97-103页
        6.3.1 Hyper-ellipsoidal Clustering Algorithm for Resource-Constrained En-vironments(HyCARCE)第97页
        6.3.2 Limitations of the HyCARCE Algorithm第97-98页
        6.3.3 Hyper-Ellipsoidal Clustering for Evolving Data Stream第98-103页
    6.4 The HECES Algorithm第103-107页
        6.4.1 Steps of the HECES Algorithm第103-105页
        6.4.2 Complexity Analysis of the HECES Algorithm第105-107页
    6.5 Experimental Evaluation第107-110页
        6.5.1 Datasets第107-108页
        6.5.2 Cluster Vaildity Criterion第108-109页
        6.5.3 Evaluation of HECES for Synthetic Datasets第109-110页
        6.5.4 Evaluation of HECES for Real Datasets第110页
    6.6 Summary第110-117页
Chapter 7 Conclusions and Future Work第117-120页
    7.1 Conclusions第117-118页
    7.2 Future Directions第118-120页
Acknowledgements第120-121页
References第121-130页
List of Publications第130-131页
Research Fundings第131页

论文共131页,点击 下载论文
上一篇:无线钓鱼接入点检测技术的研究与实现
下一篇:老年前后脑循环梗死患者吞咽困难及吸入性肺炎的对比研究