人脸表情识别研究
摘要 | 第1-4页 |
ABSTRACT | 第4-7页 |
第一章 绪论 | 第7-15页 |
·研究意义及应用 | 第7页 |
·国内外研究现状 | 第7-8页 |
·人脸表情识别概述 | 第8-13页 |
·表情识别的难点 | 第13-14页 |
·论文的组织 | 第14-15页 |
第二章 表情的预处理 | 第15-19页 |
·数据库的选择 | 第15-16页 |
·表情图像的预处理 | 第16-18页 |
·本章小结 | 第18-19页 |
第三章 基于独立成分分析的特征提取 | 第19-28页 |
·独立成分分析 | 第19-24页 |
·独立成分分析的定义方法 | 第19-21页 |
·FastICA | 第21-24页 |
·基于独立成分分析的表情特征提取 | 第24-26页 |
·基于FastICA表情特征提取 | 第25-26页 |
·基于FastICA的二次表情特征提取 | 第26页 |
·本章小结 | 第26-28页 |
第四章 基于支持向量机的分类识别 | 第28-46页 |
·支持向量机的分类原理 | 第28-34页 |
·统计学理论 | 第28-30页 |
·支持向量机理论 | 第30-34页 |
·支持向量机的多分类器设计 | 第34-35页 |
·基于支持向量机的表情识别 | 第35-39页 |
·实验过程 | 第35-37页 |
·实验结果及分析 | 第37-39页 |
·支持向量机参数选择与优化 | 第39-44页 |
·交叉验证法 | 第39-41页 |
·启发式粒子群优化算法 | 第41-44页 |
·本章小结 | 第44-46页 |
第五章 基于概率神经网络的分类识别 | 第46-55页 |
·概率神经网络概述 | 第46-49页 |
·径向基函数网络 | 第46-47页 |
·概率神经网络 | 第47-49页 |
·概率神经网络模型的建立 | 第49-50页 |
·实验过程及分析 | 第50-53页 |
·两种识别方法的比较 | 第53-54页 |
·本章小结 | 第54-55页 |
第六章 总结与展望 | 第55-57页 |
·研究内容总结 | 第55页 |
·问题与展望 | 第55-57页 |
致谢 | 第57-58页 |
参考文献 | 第58-61页 |
攻读硕士学位期间发表的论文 | 第61-62页 |
详细摘要 | 第62-71页 |