首页--工业技术论文--石油、天然气工业论文--油气田开发与开采论文--采油工程论文--提高采收率与维持油层压力(二次、三次采油)论文

低矿化度水驱油提高采收率机理数值模拟和人工智能模型研究

ABSTRACT第5页
摘要第6-14页
CHAPTER ONE: INTRODUCTION第14-26页
    1.0 Background of Low Salinity Waterflooding第14-16页
    1.1 Research Status and Motivation for Low Salinity Waterflooding Research第16-18页
    1.2 Aims and Objectives of the Research第18-19页
    1.3 Main Research Content and Technical Methods第19-23页
        1.3.1 Chemical Tracer Numerical Reservoir Simulator Development第19-20页
        1.3.2 LSWF Numerical Reservoir Simulator Development第20-21页
        1.3.3 Polymer Flooding EOR Combined with LSWF EOR第21-22页
        1.3.4 Artificial Intelligence and Evolutionary Algorithm for History Matching第22页
        1.3.5 Technical Methodology第22-23页
    1.4 Significance of the Research第23-24页
    1.5 Thesis Organization第24页
    1.6 Innovations of the Research第24-25页
    1.7 Chapter Summary第25-26页
CHAPTER TWO: LITERATURE REVIEW第26-64页
    2.0 Introduction第26页
    2.1 Key Variables that Affect Low Salinity Process第26-35页
        2.1.1 Reservoir Lithology第26-31页
            2.1.1.1 Rock and Clay Mineralogy第27页
            2.1.1.2 Types of Reactive Clay Minerals第27-31页
        2.1.2 Presence of Crude Oil第31-32页
        2.1.3 Presence of Connate water (Brine)第32-33页
        2.1.4 Multivalent Ion Content in the Formation Water第33页
        2.1.5 Salinity Shock第33页
        2.1.6 Wettability Alteration Fundamental Concept第33-35页
    2.2 Proposed Mechanisms for LSWF EOR in Sandstone Reservoirs第35-51页
        2.2.1 Fine Migration第36-38页
            2.2.1.1 Mechanism第36页
            2.2.1.2 LSWF Fine Migration Supporting Evidence第36-37页
            2.2.1.3 LSWF Fine Migration Contradictory Evidence第37-38页
        2.2.2 Double Layer Expansion (DLE)第38-41页
            2.2.2.1 DLE Mechanism第38-39页
            2.2.2.2 LSWF DLE Supporting Evidence第39-40页
            2.2.2.3 LSWF DLE Contradictory Evidence第40-41页
        2.2.3 Multi-Ion Exchange (MIE)第41-44页
            2.2.3.1 Mechanism第41-42页
            2.2.3.2 LSWF MIE Supporting Evidence第42-43页
            2.2.3.3 LSWF MIE Contradictory Evidence第43-44页
        2.2.4 p H Increase and Surfactant Generation第44-45页
            2.2.4.1 Mechanism第44页
            2.2.4.2 p H Increase and Surfactant Generation Supporting Evidence第44页
            2.2.4.3 p H Increase and Surfactant Generation Contradictory Evidence第44-45页
        2.2.5 Local Increase in p H ( )(35)p H (Desorption of Organic Material)第45-48页
            2.2.5.1 Mechanism第45-46页
            2.2.5.2 LSWF Local Increase in p H Supporting Evidence第46-47页
            2.2.5.3 LSWF Local Increase in p H Contradictory Evidence第47-48页
        2.2.6 Salting-In Effect第48-49页
            2.2.6.1 Mechanism第48页
            2.2.6.2 LSWF Salting-In Effect Supporting Evidence第48页
            2.2.6.3 LSWF Salting-In Effect Contradictory Evidence第48-49页
        2.2.7 Wettability Alteration第49-51页
            2.2.7.1 Mechanism第49页
            2.2.7.2 LSWF Wettability Alteration Supporting Evidence第49-50页
            2.2.7.3 LSWF Wettability Alteration Contradictory Evidence第50-51页
        2.2.8 Osmotic Pressure第51页
            2.2.8.1 Mechanism and Supporting Evidence第51页
            2.2.8.2 LSWF Osmotic Pressure Contradictory Evidence第51页
    2.3 Field-Scale Implementation of LSWF in Sandstone Reservoirs第51-54页
        2.3.1 Current Status of LSWF Field-Scale Implementation第53-54页
    2.4 LSWF Modeling and Numerical Reservoir Simulation第54-57页
        2.4.1 Literature Review on Numerical Modeling and Simulation inClastic Reservoirs第54-57页
    2.5 Introduction to Single and Interwell Chemical Tracer Test第57-58页
    2.6 Low Salinity Polymer Injection第58-60页
    2.7 Literature Review on History Matching Techniques第60-63页
    2.8 Chapter Summary第63-64页
CHAPTER THREE: MATHEMATICAL MODELING OF LOW SALINITY WATERFLOODING第64-127页
    3.0 Background of Chemical Tracer Test Modeling第64页
    3.1 Stochastic Modeling of Porous Media (Heterogeneity Modeling)第64-68页
        3.1.1 Novel Geostatistical Simulation Methodology第64-67页
        3.1.2 Turning Bands Simulation Method第67页
        3.1.3 Static and Dynamic Measures of Reservoir Heterogeneity第67-68页
    3.2 Chemical Tracer Numerical Simulator Mathematical Modeling第68-76页
        3.2.1 Chemical Tracer Numerical Simulator Basic Assumptions第68-69页
        3.2.2 Formulation of Mathematical Fluid Flow Equation第69-71页
        3.2.3 Total Variation Diminishing Schemes第71-74页
        3.2.4 Initial and Boundary Conditions第74页
        3.2.5 Solution Technique for Convection-Diffusion Equation第74页
        3.2.6 Validation of Numerical Solutions with Analytical Solutions第74-75页
        3.2.7 Estimation of Average ROS by Numerical Approach第75页
        3.2.8 Computer Model Development第75-76页
    3.3 Multiphase and Multi-Component Reactive Transport Modeling in Porous Media第76-91页
        3.3.1 Basic multiphase flow equations for LSWF EOR Modeling第76-81页
            3.3.1.1 Mathematical Modeling Assumptions第76-77页
            3.3.1.2 Mass Conservation and Darcy law第77-81页
        3.3.2 Stable Thermodynamic Equilibrium Relations第81-84页
            3.3.2.1 Equations of State第82-84页
        3.3.3 Principal Unknowns第84-86页
        3.3.4 Approximation of Time, Spatial and Equilibrium Relation第86-88页
        3.3.5 Solution Technique for the Mathematical Models第88-91页
            3.3.5.1 Solution Procedure第91页
    3.4 Geochemical Modeling of LSWF EOR第91-97页
        3.4.1 Intra-Aqueous Chemical Equilibrium Reactions Stoichiometry第92页
        3.4.2 Chemical Equilibrium Reactions第92-94页
        3.4.3 Kinetics of Precipitation and Dissolution Reactions第94-97页
    3.5 Ion Exchange Model for LSWF EOR (Multi-ion exchange theory)第97-101页
        3.5.1 Cation Exchange Capacity (CEC)第100-101页
    3.6 Wettability Alteration Model for LSWF EOR第101-104页
    3.7 History Matching LSWF EOR with Hybridized BPANN and PSO Algorithm第104-115页
        3.7.1 Backpropagation Artificial Neural Network第104-107页
        3.7.2 Artificial Neural Network Modeling Flowchart第107页
        3.7.3 Particle Swarm Optimization Methodology第107-111页
        3.7.4 Encoding Strategy第111-113页
            3.7.4.1 Matrix Encoding Scheme第111-113页
        3.7.5 Goodness of Fit第113-115页
        3.7.6 Dataset Standardization第115页
    3.8 Mathematical Modeling of Low Salinity Polymer Flooding第115-124页
        3.8.1 Polymer Flooding Mathematical Modeling Assumptions第115-116页
        3.8.2 Multiphase Flow and Transport Equations第116-121页
        3.8.3 Constitutive System of Equations Coupling第121页
        3.8.4 Polymer Adsorption第121-122页
        3.8.5 Permeability Reduction Factor第122页
        3.8.6 Non-Newtonian In-situ Polymer Rheology第122-123页
        3.8.7 Initial and Boundary Conditions for Low Salinity Polymer Flooding第123页
        3.8.8. Solution Technique for Polymer Transport in Porous Media第123-124页
        3.8.9 Computer Model Implementation for LSP Flooding第124页
    3.9 Chapter Summary第124-127页
CHAPTER FOUR: RESULTS AND DISCUSSION第127-195页
    4.0 Interwell-Well Chemical-Tracer Modeling第127页
    4.1 Physical Model Formulation第127-129页
    4.2 Validation of numerical solution with analytical solution第129页
    4.3 Technical Characteristic of the Developed Chemical Tracer Test Simulator第129-130页
    4.4 Stochastic Input and Output Parametric Values Interpretation第130-131页
    4.5 Viscous Fingering and Flow Channeling in a Homogeneous Model第131-135页
    4.6 Viscous Fingering and Flow Channeling in a Heterogeneous Model第135-149页
        4.6.1 Proposed Method and TBM Heterogeneous Permeability Maps第135-137页
        4.6.2 CPU Run Time for Simulated Permeability Maps第137页
        4.6.3 Fluid Mobility Viscous Fingering第137-143页
        4.6.4 Preferential Flow Channeling第143-145页
        4.6.5 Heterogeneous Viscous Fingering第145-147页
        4.6.6 Viscous Fingering and Channeling Flow Pattern Map第147-149页
        4.6.7 Effects of Diffusion Coefficients on Viscous Fingering andFlow Channeling Phenomena第149页
    4.7 LSWF Numerical Example Study第149-172页
        4.7.1 Validation of LSWF Numerical Simulator with Buckley Leverett Analytical Solution第151-152页
        4.7.2 Validation of Multi-Ion Exchange Model第152-157页
            4.7.2.1 PHREEQC Geochemical Package第152-153页
            4.7.2.2 ID PHREEQC and Numerical Simulator Simulations第153-154页
            4.7.2.3 LSWF Ion Exchange Validation第154-155页
            4.7.2.4 HSWF Ion Exchange Validation第155-157页
        4.7.3 LSWF Texas Sandstone Reservoir Core Flood Experiment Case Study第157-163页
            4.7.3.1 Rivet (2009) Coreflooding Experiment第159-160页
            4.7.3.2 1DLinear Model Numerical Simulation and Validation第160-163页
        4.7.4 LSWF and HSWF Validation of Average Oil Saturation第163-169页
            4.7.4.1 LSWF Validation of Average Oil Saturation Results第163-165页
            4.7.4.2 HSWF Validation of Average Oil Saturation Results第165-166页
            4.7.4.3 LSWF and HSWF Oil Recovery Factors第166-167页
            4.7.4.4 LSWF Effluent p H History第167-169页
            4.7.4.5 HSWF Effluent p H History第169页
        4.7.5 Analytical Prediction of LSWF and HSWF Performance第169-172页
            4.7.5.1 LSWF and HSWF Fractional Flow Curves第170-172页
    4.8 Low Salinity Polymer Flooding (Hybrid EOR effect)第172-180页
        4.8.1 1DNumerical and Analytical Model Validation第174-175页
        4.8.2 2DNumerical Simulation of LSP第175-180页
    4.9 BPANN and PSO Hybridized Algorithm for History Matching LSWF andHSWF Coreflooding Data第180-193页
        4.9.1 HSWF History Matching第180-189页
            4.9.1.1 Training and Testing of Oil Saturation with BPANN and PSO-BPANN Model (HSWF)第185-188页
            4.9.1.2 Training and Testing of Oil Recovery with BPANN and PSO-BPANN Model (HSWF)第188-189页
        4.9.2 LSWF History Matching第189-193页
            4.9.2.1 Training and Testing of Oil Saturation with BPANN and PSO-BPANN Model (LSWF)第190-191页
            4.9.2.2 Training and Testing of Oil Recovery with BPANN and PSO-BPANN Model (LSWF)第191-193页
    4.10 Chapter Summary第193-195页
CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS第195-198页
    5.0 Conclusions第195页
    5.1 Conclusions on Chemical Tracer Numerical Simulator第195页
    5.2 Conclusions on Numerical Simulation and Modeling of LSWF and HSWF第195-196页
    5.3 Conclusions on Low Salinity Polymer Flooding (Hybrid EOR effect)第196页
    5.4 Conclusions on Artificial Intelligence and Swarm Intelligence Model Development第196页
    5.5 Recommendation for Future Research Work第196-198页
REFERENCES第198-223页
ACKNOWLEDGEMENT第223页
DEDICATION第223-224页
APPENDIXES第224-229页

论文共229页,点击 下载论文
上一篇:地层温度压力条件下低渗透砂岩中CO2-CH4-H2O的毛细作用研究
下一篇:渤海湾盆地东濮凹陷形成与演化的数值模拟与构造分析