摘要 | 第5-6页 |
ABSTRACT | 第6-7页 |
第一章 绪论 | 第10-20页 |
1.1 研究背景 | 第10-12页 |
1.2 国内外研究现状以及发展趋势 | 第12-18页 |
1.3 本文主要内容安排 | 第18-20页 |
第二章 APA类可变参数算法 | 第20-36页 |
2.1 一般化数学模型 | 第20-21页 |
2.2 可变步长APA | 第21-29页 |
2.2.1 理论结果——从MSD的角度分析 | 第21-23页 |
2.2.2 理论结果——从MSE的角度分析 | 第23-24页 |
2.2.3 新的可变步长APA | 第24-29页 |
2.2.3.1 可变迭代步长 | 第25-26页 |
2.2.3.2 计算复杂度分析 | 第26-27页 |
2.2.3.3 仿真结果 | 第27-29页 |
2.3 可变阶数APA | 第29-35页 |
2.3.1 理论结果——从MSD的角度分析 | 第30-31页 |
2.3.2 理论结果——从MSE的角度分析 | 第31页 |
2.3.3 新的可变阶数APA | 第31-35页 |
2.3.3.1 推导过程 | 第31-33页 |
2.3.3.2 仿真结果 | 第33-35页 |
2.4 本章小结 | 第35-36页 |
第三章 APA类组合算法 | 第36-59页 |
3.1 组合算法类型简介 | 第36-37页 |
3.2 APA与NLMS组合算法的数学模型 | 第37-39页 |
3.3 APA与NLMS组合算法理论结果——从MSD的角度分析 | 第39-40页 |
3.4 APA与NLMS组合算法理论结果——从MSE的角度分析 | 第40-41页 |
3.5 新的APA与NLMS组合算法 | 第41-58页 |
3.5.1 推导过程 | 第41-45页 |
3.5.2 稳定收敛条件 | 第45-49页 |
3.5.3 可变混合参数 | 第49-51页 |
3.5.4 计算复杂度 | 第51-52页 |
3.5.5 仿真结果 | 第52-58页 |
3.6 本章小结 | 第58-59页 |
第四章 APSA类可变步长算法 | 第59-73页 |
4.1 一般化数学模型 | 第59-60页 |
4.2 可变步长APSA | 第60-72页 |
4.2.1 理论结果——从MSD的角度分析 | 第60-61页 |
4.2.2 理论结果——从MSE的角度分析 | 第61-62页 |
4.2.3 新的可变步长APSA | 第62-72页 |
4.2.3.1 算法推导 | 第62-64页 |
4.2.3.2 稳定性分析 | 第64-65页 |
4.2.3.3 重置算法 | 第65-66页 |
4.2.3.4 仿真结果 | 第66-72页 |
4.3 本章小结 | 第72-73页 |
第五章 总结与展望 | 第73-78页 |
5.1 总结 | 第73-76页 |
5.2 文中的不足之处以及未来展望 | 第76-78页 |
致谢 | 第78-79页 |
参考文献 | 第79-86页 |
攻读硕士期间取得的研究成果 | 第86-87页 |