摘要 | 第4-5页 |
Abstract | 第5页 |
第一章 引言 | 第7-11页 |
第一节 研究背景 | 第7-9页 |
第二节 主要结果 | 第9-11页 |
第二章 Aubry-Mather理论 | 第11-17页 |
第一节 Birkhoff构型 | 第11-12页 |
第二节 最小能量构型 | 第12-15页 |
第三节 壳函数 | 第15-17页 |
第三章 梯度流及其平衡点 | 第17-27页 |
第一节 上解与下解 | 第17-20页 |
第二节 梯度流 | 第20-27页 |
第四章 脱钉力的定义与性质 | 第27-34页 |
第一节 脱钉力的定义 | 第27-31页 |
第二节 两种定义的等价性 | 第31-34页 |
第五章 基本估计 | 第34-44页 |
第一节 Birkhoff构型的进一步的性质 | 第34-37页 |
第二节 脱钉力的估计 | 第37-44页 |
第六章 主要定理的证明 | 第44-54页 |
第一节 脱钉力的连续性 | 第44-46页 |
第二节 对参数的连续依赖性 | 第46-47页 |
第三节 叶状结构的判定 | 第47-54页 |
总结与研究展望 | 第54-56页 |
参考文献 | 第56-59页 |
攻读硕士学位期间撰写的论文 | 第59-60页 |
致谢 | 第60-61页 |