首页--生物科学论文--植物学论文--植物细胞遗传学论文--植物基因工程论文

植物高通量基因型和表型数据计算分析及工具开发

Acknowledgements第9-17页
Abstract第17-19页
摘要第20-22页
Chapter 1 High-Throughput Phenotyping in Plants第22-46页
    1.1 Introduction第23-25页
    1.2 Effects of environmental factors for plant phenotyping第25-26页
    1.3 Importance of Phenotyping in Modern Agriculture第26-28页
    1.4 Mechanism of Imaging Technologies: Meeting Challenges and Needs in Plant Phenomics第28-29页
    1.5 Available Imaging Devices for High-Throughput Phenotyping第29-33页
        1.5.1 Visible Light Imaging第29-30页
        1.5.2 Infrared Imaging第30-31页
        1.5.3 Fluorescence Imaging第31-32页
        1.5.4 Spectroscopy Imaging第32页
        1.5.5 Structural Tomography and Other Imaging第32-33页
    1.6 Experiment Setup and Large-Scale Phenotype Data Collection第33-36页
    1.7 Principles of Phenotype Data for Forecasting Plant Performance第36-39页
    1.8 High-Throughput Phenotype Data Analysis第39-44页
        1.8.1 Hypothesis第39-40页
        1.8.2 Data Quality第40页
        1.8.3 Data Dimension第40-41页
        1.8.4 Model Selection第41-42页
        1.8.5 Networking第42页
        1.8.6 Growth Modeling第42-43页
        1.8.7 Classification第43页
        1.8.8 Similarity/Dissimilarity Measurement第43-44页
    1.9 Conclusion第44-46页
Chapter 2 CompareSVM: Tool for Analyzing High Throughput Genotyping (expression profiles) Datafor Insight into Phenotyping第46-71页
    2.1 Introduction第47-49页
    2.2 Methods第49-53页
        2.2.1 Supervised methods SVM第49-51页
        2.2.2 Unsupervised methods第51-53页
    2.3 CompareSVM第53-55页
    2.4 Evaluation第55-56页
    2.5 Results第56-59页
    2.6 Discussion第59-60页
    2.7 Implementation & Usage of CompareSVM第60-70页
        2.7.1 Installation第60-61页
        2.7.2 Preparation of dataset第61-63页
        2.7.3 Workflow第63-68页
        2.7.4 Sample Results第68页
        2.7.5 Unsupervised Methods in R第68页
        2.7.6 Typical Workflow第68-70页
    2.8 Conclusion第70-71页
Chapter 3 HTPPA:Tool for Generating and Analyzing High Throughput Plant Phenotyping based onImaging Data第71-98页
    3.1 Introduction第71-73页
    3.2 Methods第73-82页
        3.2.1 Input Image第74页
        3.2.2 Plant Segmentation第74-79页
        3.2.3 Leaf Detection第79-80页
        3.2.4 Leaf Segmentation第80-82页
        3.2.5 Visualization and annotation第82页
    3.3 Implementation第82-85页
    3.4 Result and Discussion第85-90页
    3.5 Manual & Usage第90-97页
        3.5.1 Requirements第90页
        3.5.2 Installation第90-91页
        3.5.3 Getting Started第91-92页
        3.5.4 Load files第92页
        3.5.5 Parameters第92-95页
        3.5.6 Execute第95-97页
    3.6 Conclusions第97-98页
Chapter 4 Bridging Genomics and Phonemics第98-113页
    4.1 Introduction第98-100页
    4.2 Association between phenotype and genotype第100-102页
    4.3 Approaches for linking the genome to the phenome第102-111页
        4.3.1 QTL detection through linkage and association mapping第102-104页
        4.3.2 EWAS:linking epigenetic variation and complex traits第104-106页
        4.3.3 Variation in gene expression:from eQTLs to phenotypes第106-107页
        4.3.4 Genome-Wide association studies with metabolomics:metabolic QTL analysis第107-109页
        4.3.5 Systems biology:genome-scale networks that link genes to phenotypes第109-111页
    4.4 Conclusion第111-113页
Chapter 5 Summary and Future Perspective第113-119页
    5.1 Summary第113-114页
    5.2 Future Prospective第114-119页
Reference第119-141页
Supplementary Data第141-142页
Biography第142-143页
    Honors and Awards第142页
    List of publications第142-143页
        Publications from dissertation第142页
        Other Publications第142-143页

论文共143页,点击 下载论文
上一篇:基于压缩感知的动态宽带频谱感知算法研究
下一篇:基于BP神经网络的红细胞识别分类方法研究与系统实现