首页--工业技术论文--自动化技术、计算机技术论文--自动化基础理论论文--人工智能理论论文

基于群体智能优化的大数据复杂网络结构分析

摘要第5-8页
ABSTRACT第8-11页
Notations第18-19页
Abbreviations第19-24页
Chapter 1 Introduction第24-44页
    1.1 Background第24-25页
    1.2 Network Issues, Notations and Properties第25-28页
        1.2.1 Issues Concerning Network Analytics第25-26页
        1.2.2 Graph Based Network Notation第26-27页
        1.2.3 Eminent Properties of Network第27-28页
    1.3 Community Structure Analytics第28-31页
        1.3.1 Description of Community Discovery第28-29页
        1.3.2 Qualitative Community Definition第29-30页
        1.3.3 Existing Approaches for Community Discovery第30-31页
    1.4 Structural Balance Analytics第31-35页
        1.4.1 Signed Network Notation第31-32页
        1.4.2 Structural Balance Theory第32-34页
        1.4.3 The Importance of Structural Balance第34-35页
    1.5 Optimization and Evolutionary Algorithm第35-39页
        1.5.1 What Is Optimization第35页
        1.5.2 Why We Need Optimization第35-36页
        1.5.3 How to tackle Optimization Problems第36页
        1.5.4 Evolutionary Multiobjective Optimization第36-39页
    1.6 Particle Swarm Optimization第39-41页
        1.6.1 Canonical Particle Swarm Optimization第39-40页
        1.6.2 Discrete Particle Swarm Optimization第40-41页
    1.7 Multiobjective Particle Swarm Optimization第41页
    1.8 Organization of the Dissertation第41-44页
Chapter 2 Unsigned Big Network Community Discovery Based on ParticleSwarm Optimization第44-62页
    2.1 Motivation第44-46页
    2.2 Proposed Algorithm for Community Discovery第46-52页
        2.2.1 Algorithm Framework第46-47页
        2.2.2 Fitness Function第47页
        2.2.3 Particle Representation and Initialization第47-48页
        2.2.4 Particle-status-updating Rules第48-50页
        2.2.5 Particle Position Reordering第50-52页
    2.3 Experimental Study第52-58页
        2.3.1 Performance Metric第52-53页
        2.3.2 Results on Synthetic Networks第53-54页
        2.3.3 Results on Real-world Networks第54-58页
    2.4 Additional Discussion on GDPSO第58-61页
        2.4.1 Discussion on Algorithm Parameters第58-59页
        2.4.2 Discussion on Position Update Principle第59-61页
    2.5 Conclusions第61-62页
Chapter 3 Signed Big Network Community Detection Based on Particle SwarmOptimization第62-72页
    3.1 Motivation第62-63页
    3.2 Proposed Algorithm for Community Discovery第63-64页
    3.3 Experimental Studies第64-70页
        3.3.1 Comparison Algorithms第64-65页
        3.3.2 Results on Synthetic Signed Networks第65页
        3.3.3 Results on Real-World Signed Networks第65-70页
    3.4 Conclusions第70-72页
Chapter 4 Multi-Resolution Network Clustering Using MOPSO With Decom-position第72-104页
    4.1 Motivations第72-74页
        4.1.1 Motivations for Choosing PSO Framework for Complex Network Clustering第72-73页
        4.1.2 Motivations for Proposing the Discrete MOPSO Algorithm第73页
        4.1.3 Motivations for Introduced Mechanisms to Preserve Diversity第73-74页
    4.2 Proposed Algorithm for Multi-Resolution Network Clustering第74-84页
        4.2.1 Objective Function第74-76页
        4.2.2 Definition of Discrete Position and Velocity第76-77页
        4.2.3 Discrete Particle Status Updating第77-80页
        4.2.4 Particle Swarm Initialization第80页
        4.2.5 Selection of Leaders第80-81页
        4.2.6 Framework of the Proposed Algorithm第81页
        4.2.7 Turbulence Operator第81-83页
        4.2.8 Complexity Analysis第83-84页
    4.3 Experimental Studies第84-101页
        4.3.1 Comparison Algorithms第84-86页
        4.3.2 Experimental Settings第86页
        4.3.3 Experiments on Unsigned Benchmark Networks第86-90页
        4.3.4 Experiments on Unsigned LFR Benchmark Networks第90-91页
        4.3.5 Experiments on Unsigned Real-world Networks第91-99页
        4.3.6 Experiments on Signed Networks第99-101页
    4.4 Conclusions第101-104页
Chapter 5 A Two-Step Approach for Network Structural Balance Analytics第104-126页
    5.1 Motivation第104-106页
        5.1.1 Limitations of Traditional Methods第104-105页
        5.1.2 Our Two-Step Idea第105-106页
    5.2 Methodology第106-111页
        5.2.1 General Framework第106-108页
        5.2.2 Model Selection第108-111页
        5.2.3 Complexity Analysis第111页
    5.3 Experimental Study第111-124页
        5.3.1 Signed Network Data Sets第111-113页
        5.3.2 Validation Experiments第113-115页
        5.3.3 Comparisons With Other MOEAs第115-119页
        5.3.4 Structural Balance Experiments第119-123页
        5.3.5 Discussion on Parameters第123-124页
    5.4 Conclusions第124-126页
Chapter 6 Conclusion And Perspectives第126-128页
    6.1 Thesis Conclusion第126页
    6.2 Future Directions and Challenges第126-128页
References第128-140页
Acknowledgements第140-142页
Biography第142-144页

论文共144页,点击 下载论文
上一篇:鄂温克民俗文化元素在插画创作中的图形表现研究
下一篇:融于自然的自驾游营地设计