首页--工业技术论文--电工技术论文--独立电源技术(直接发电)论文--化学电源、电池、燃料电池论文--燃料电池论文

Anion Exchange Membranes Structure Control and Performance Evaluation for Diffusion Dialysis,Electrodialysis and Fuel Cell Applications

摘要第4-6页
Abstract第6-8页
Chapter 1 Introduction and Background第22-44页
    1.1 General Description第22-23页
    1.2. Fundamental Concept of Ion Exchange Membrane第23-24页
    1.3. Anion Exchange Membrane第24-28页
        1.3.1. Anion Exchange Membranes with New Cationic Head Groups第25-27页
        1.3.2. Anion Exchange Membranes with New Polymer Architecture第27-28页
    1.4. Application of Anion Exchange Membranes第28-39页
        1.4.1. Diffusion Dialysis (DD)第28-32页
            1.4.1.1. Fundamental Concept of Diffusion Dialysis第30页
            1.4.1.2. Models for Diffusion Dialysis第30-31页
            1.4.1.3. Experimental Setups for Diffusion Dialysis第31-32页
        1.4.2. Electrodialysis第32-35页
            1.4.2.1. Basic Principles of Electrodialysis第33-34页
            1.4.2.2. Models and Experimental Setups for Electrodialysis Proces第34-35页
        1.4.3. Anion Exchange Membrane Fuel Cell第35-39页
            1.4.3.1. The Principles of the Anion Exchange Membrane as Polymer Electrolyte第36-37页
            1.4.3.2. Desired Properties of AEMFCs第37-38页
            1.4.3.3. Transport Mechanism in AEMFCs第38-39页
        1.4.4. The other Applications of Anion Exchange Membrane第39页
    1.5. Scope and Objective of the Thesis第39-44页
Chapter 2 Experimental and Characterization第44-56页
    2.1. Materials and Reagents第44-45页
    2.2. General Methods of Membranes Preparation第45页
    2.3. Characterizations and Methods第45-56页
        2.3.1. Polymer Characterization第45-46页
        2.3.2. Water Uptake (WU)第46页
        2.3.3. Static Water Contact Angle (WCA)第46页
        2.3.4. Mechanical and Thermal Analysis第46页
        2.3.5. Fluorescein Isothiocyanate Analysis (FITC)第46-47页
        2.3.6. Scanning Electron Microscopy (SEM)第47页
        2.3.7. Atomic Force Microscopy (AFM)第47页
        2.3.8. Ion Exchange Capacity (IEC)第47-48页
        2.3.9. Linear Swelling Ratio (LER)第48页
        2.3.10. Fixed Charge Concentration第48页
        2.3.11. Transport Number第48-49页
        2.3.12. Current-Voltage Curve第49-50页
        2.3.13. Membrane Area Resistance and Limiting Current Density第50页
        2.3.14. Chemical Stability and Alkaline Stability第50页
        2.3.15. Experimental and Full Factorial Design第50-51页
        2.3.16. Activation Energy第51页
        2.3.17. Diffusion Dialysis第51-52页
        2.3.18. Electrodialysis第52-54页
        2.3.19. Hydroxide Conductivity第54页
        2.3.20. Methanol Permeability第54-56页
Chapter 3 PVA-QUDAP based anion exchange membranes for diffusion dialysis第56-72页
    3.1. Introduction第56-57页
    3.2. Experimental第57-60页
        3.2.1. Synthesis of 2-Dimethylamino Methyl pyridine第57-58页
        3.2.2. Synthesis of QUDAP第58-59页
        3.2.3 Fabrication of the QUDAP/PVA Membrane第59-60页
    3.3. Results and Discussion第60-69页
        3.3.1. Fourier Transform Infrared Spectroscopy第60页
        3.3.2. Ion Exchange Capacity and Water Uptake第60-61页
        3.3.3. Membrane Morphology第61-62页
        3.3.4. Mechanical Stability第62-63页
        3.3.5. Thermal Stability第63-64页
        3.3.6. Diffusion Dialysis Results第64-66页
        3.3.7. Theoretical Analysis in Diffusion Dialysis第66-69页
    3.4. Conclusion第69-72页
Chapter 4 Augmenting acid recovery from different systems by novel Q-DAN anionexchange membranes via diffusion dialysis第72-88页
    4.1. Introduction第72-73页
    4.2. Experimental第73-76页
        4.2.1. Synthesis of Quaternized DAN第73-75页
        4.2.2. Membrane preparation第75-76页
    4.3. Results and Discussion第76-85页
        4.3.1. Structural and Morphological Characterizations of Q-DAN AEMs第76-77页
        4.3.2. Water Uptake and Ion Exchange Capacity (IEC)第77-78页
        4.3.3. Thermal and Mechanical Stabilities第78-80页
        4.3.4. Diffusion Dialysis Process第80-85页
            4.3.4.1. HCl and FeCl_2 System第81-83页
            4.3.4.2. Representative Multivalent Metal ions-HCl Systems第83-85页
    4.4. Conclusion第85-88页
Chapter 5 Investigation of key process parameters in acid recovery for diffusion dialysisusing novel (MDMH-QPPO) anion exchange membranes第88-106页
    5.1. Introduction第88-90页
    5.2. Experimental第90-93页
        5.2.1. Synthesis of Methyl 6-(dimethylamino) Hexanoate第90页
        5.2.2. Synthesis of Methyl 6-(dimethylamino) Hexanoate第90-92页
        5.2.3. Membrane Preparation第92页
        5.2.4. Plan of Experiments第92-93页
    5.3. Results and Discussion第93-105页
        5.3.1. ~1H NMR Analysis第93-94页
        5.3.2. FTIR Analysis for Membrane Structure第94-95页
        5.3.3. Morphologies of MDMH-QPPO AEMs第95-97页
        5.3.4. Ion Exchange Capacity (IEC), Water Uptake (WU) and Swelling Ratio (LER)第97-98页
        5.3.5. Membrane Mechanical and Thermal Stabilities第98-100页
        5.3.6. Diffusion Dialysis Performance第100-103页
        5.3.7. Investigation of Dominant Factors Order in Diffusion Dialysis第103-105页
    5.4. Conclusion第105-106页
Chapter 6 Anion exchange membranes with hydrophobic chains for monovalent-divalentseparation in electrodialysis第106-126页
    6.1. Introduction第106-108页
    6.2. Experimental第108-110页
        6.2.1. Synthesis of 2-(N,N-Dimethylamino) Methylpyridine第108-109页
        6.2.2. Synthesis of QPP, QHP, and QUP第109页
        6.2.3. Membrane Preparation第109-110页
    6.3. Results and Discussion第110-124页
        6.3.1. NMR Analysis第110-111页
        6.3.2. IEC, WU, and LSR第111-113页
        6.3.3. Mechanical Strength第113-114页
        6.3.4. SEM and AFM Morphology第114页
        6.3.5. Transport Number第114-116页
        6.3.6. Current-Voltage Curve第116-117页
        6.3.7. Mono/Multi-valent Anion Selectivity第117-124页
            6.3.7.1. Effect of IEC on Selectivity第117-121页
            6.3.7.2. Effect of Hydrophobic Side Chains on Selectivity第121-122页
            6.3.7.3. Operational Stability第122-124页
    6.4. Conclusion第124-126页
Chapter 7 Alkaline stable anion exchange membranes for fuel cells第126-144页
    7.1. Introduction第126-128页
    7.2. Experimental第128-129页
        7.2.1. Synthesis of Dipicolylamine第128-129页
        7.2.2. Synthesis of N-methyl Dipicolylamine (MDPA)第129页
        7.2.3. Membrane Fabrication第129页
    7.3. Results and Discussion第129-142页
        7.3.1. ~1H NMR, FTIR Analysis for Membrane Structure第129-133页
        7.3.2. Electrochemical properties relationship第133-134页
        7.3.3. Morphology第134-135页
        7.3.4. Mechanical behavior第135-136页
        7.3.5. Thermal behavior第136-137页
        7.3.6. Alkaline stability第137-138页
        7.3.7. Hydroxide conductivity and activation energy第138-139页
        7.3.8. Methanol permeability第139-142页
    7.4. Conclusion第142-144页
Chapter 8 Overall Conclusion and Future Perspectives第144-150页
    8.1. Overall Conclusion第144-147页
    8.2. Future Perspectives第147-150页
References第150-179页
Acknowledgement第179-181页
List of Publications第181页

论文共181页,点击 下载论文
上一篇:中空多壳层结构TiO2基硫载体材料及其在锂硫电池中的应用
下一篇:高效太阳能热电发电系统设计及热电转换性能研究