首页--数理科学和化学论文--数学论文--数学分析论文--微分方程、积分方程论文

几类分数阶方程(组)解的存在性及对称性等问题的研究

摘要第8-9页
Abstract第9页
Prefaces第10-16页
Chapter 1 Existence and multiplicity of solutions for fractional Choquard equations第16-38页
    1.1 Introduction第16-18页
    1.2 Preliminaries and functional setting第18-23页
    1.3 Proof of Theorem 1.1.1 and Theorem 1.1.2第23-28页
    1.4 Proof of Theorem 1.1.3第28-38页
Chapter 2 Symmetry of solutions for a fractional system第38-62页
    2.1 Introduction第38-43页
    2.2 Proof of the Maximum principles第43-47页
        2.2.1 Decay at infinity第43-44页
        2.2.2 Narrow region principle第44-47页
    2.3 Radial symmetry under decay-rate assumption第47-50页
    2.4 Proof of Theorem 2.1.3第50-58页
    2.5 Proof of Theorem 2.1.4第58-59页
    2.6 Appendices第59-61页
    2.7 Summary第61-62页
Chapter 3 Symmetry and nonexistence of positive solutions for a fractional Choquard equation第62-87页
    3.1 Introduction第62-64页
    3.2 Proof of Theorem 3.1.1 and 3.1.2第64-69页
        3.2.1 Decay at infinity第65-66页
        3.2.2 Narrow region principle第66-69页
    3.3 The symmetry of positive solutions第69-71页
    3.4 Proof of Theorem 3.1.3第71-83页
    3.5 Appendices第83-87页
Chapter 4 Symmetry and nonexistence of positive solutions for fractional systems第87-108页
    4.1 Introduction第87-91页
    4.2 The symmetry of positive solutions第91-93页
    4.3 Proof of Theorem 4.1.1第93-98页
    4.4 The equivalence between problem (4.1.2) and the integral form (4.1.3)第98-100页
    4.5 The nonexistence of positive solutions第100-105页
    4.6 Appendices第105-108页
Chapter 5 A Pohozaev identity for the fractional Henon system第108-126页
    5.1 Introduction第108-111页
    5.2 Preliminary第111-120页
    5.3 The proof of our main theorems第120-126页
Bibliography第126-132页
Acknowledgements第132-133页
Further researches第133-134页
Publications and Finished Papers第134页

论文共134页,点击 下载论文
上一篇:几个偏微分方程的保结构算法构造及误差分析
下一篇:余半倾斜理论