首页--数理科学和化学论文--概率论与数理统计论文--数理统计论文--一般数理统计论文

基于Hausdorff距离的参数估计收敛性分析

摘要第4-6页
Abstract第6-7页
目录第8-10页
Contents第10-12页
第1章 绪论第12-23页
    1.1 研究背景第12-15页
    1.2 参数估计收敛性分析的研究现状第15-17页
    1.3 极限准则函数极值唯一性的研究现状第17-18页
    1.4 开环和闭环试验设计比较的研究现状第18-21页
    1.5 本文主要研究内容第21-23页
第2章 参数估计的集值性第23-40页
    2.1 预测误差方法第23-25页
    2.2 准则函数序列的收敛性第25-26页
    2.3 参数估计值的不唯一性第26-30页
    2.4 引入Hausdorf 距离的动机第30-38页
        2.4.1 Hausdorf 距离第33-36页
        2.4.2 Hausdorf 距离的计算第36-38页
    2.5 小结第38-40页
第3章 Hausdorf 距离意义下参数估计的收敛性分析第40-52页
    3.1 一般函数序列最小值点的收敛性分析第40-47页
    3.2 参数估计在Hausdorf 距离意义下的收敛性第47-48页
    3.3 准则函数序列局部最小值点的收敛性分析第48-51页
    3.4 小结第51-52页
第4章 一些经典模型结构下参数估计的渐近性质第52-77页
    4.1 Dc是连续统的情形第53-67页
        4.1.1 FIR模型结构第53-61页
        4.1.2 ARX模型结构第61-67页
    4.2 Dc是孤立点集的情形第67-76页
        4.2.1 ARARX模型结构第67-71页
        4.2.2 BJ模型结构第71-76页
    4.3 小结第76-77页
第5章 开环和闭环试验设计的比较分析第77-110页
    5.1 Dc是单点集的充分必要条件第77-83页
    5.2 保证 Dc是单点集的试验设计第83-96页
        5.2.1 开环辨识第84-87页
        5.2.2 闭环辨识第87-95页
        5.2.3 例子说明第95-96页
    5.3 方差矩阵第96-98页
        5.3.1 参数估计的近似方差矩阵第96-97页
        5.3.2 传递函数的近似方差矩阵第97-98页
    5.4 两种试验设计的比较第98-109页
        5.4.1 基于输入输出传递函数的比较第99-100页
        5.4.2 基于控制性能的比较第100-103页
        5.4.3 基于参数估计方差矩阵的比较第103-109页
    5.5 小结第109-110页
结论第110-112页
参考文献第112-120页
攻读博士学位期间发表的论文及其他成果第120-122页
致谢第122-123页
个人简历第123页

论文共123页,点击 下载论文
上一篇:纳米脂质及其作为新型龙血竭的载体,和它的辐射防护生物学效应研究
下一篇:重粒子碰撞电荷转移与电子损失过程的含时密度泛函理论模型研究