首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机软件论文--程序设计、软件工程论文--程序设计论文

Adaptive Distributed Data Stream Management System

Abstract第5-9页
摘要第10-19页
Acknowledgements第19-20页
Table of Contents第20-23页
目录第23-27页
List of Tables第27-28页
List of Figures第28-30页
List of Abbreviations第30-32页
CHAPTER Ⅰ.INTRODUCTION第32-42页
    1.1 Motivation第32-33页
    1.2 Data streams第33-34页
        1.2.1 The data stream definition第33页
        1.2.2 The data stream model第33-34页
        1.2.3 The data stream characteristics第34页
    1.3 Comparison between DBMSs and DSMSs第34-36页
    1.4 Challenges in streaming data processing第36-38页
    1.5 Related work第38-40页
        1.5.1 The Tribeca project第38页
        1.5.2 TinyDB第38页
        1.5.3 The Telegraph project第38-39页
        1.5.4 The Aurora project第39页
        1.5.5 The STREAM project第39页
        1.5.6 The CAPE project第39-40页
    1.6 Overview of dissertation第40-42页
CHAPTER Ⅱ.ADAPTIVE DISTRIBUTED DATA STREAM MANAGEMENT SYSTEM ARCHITECTURE FOR WIRELESS SENSOR NETWORKS第42-55页
    2.1 Motivation第42页
    2.2 Basics of wireless sensor networks第42-47页
        2.2.1 Sensor classifications第44-45页
        2.2.2 Communication in a WSN第45-46页
        2.2.3 Sensors data processing第46-47页
        2.2.4 Wireless sensor networks applications第47页
    2.3 ADDSMS architecture第47-49页
    2.4 System modules第49-53页
        2.4.1 Data wrapper第50页
        2.4.2 System manager第50-51页
        2.4.3 Query processor第51-53页
    2.5 Summary第53-55页
CHAPTER Ⅲ.CONDITIONAL SENSOR DEPLOYMENT第55-76页
    3.1 Motivation第55-56页
    3.2 Related work for sensor deployment第56-57页
    3.3 Sensors pattern第57-58页
    3.4 Conditional SLP problem formulation第58-59页
    3.5 Overview of evolution algorithms第59-68页
        3.5.1 Genetic algorithm第60-66页
        3.5.2 PSO algorithm第66-68页
        3.5.3 Hybrid algorithms第68页
    3.6 The procedure of AHO algorithm第68-71页
        3.6.1 System architecture第68-70页
        3.6.2 Fuzzy logic controller (FLC) design第70-71页
    3.7 Simulation experiment and comparison for sensor deployment第71-74页
        3.7.1 Simulation setting第71-72页
        3.7.2 Comparison between AHO, GA and PSO for SLP第72-74页
    3.8 Summary第74-76页
CHAPTER Ⅳ. COST MODEL FOR CONTINUOUS QUERY PROCESSING第76-91页
    4.1 Motivation第76页
    4.2 Continuous query in DSMS第76-78页
    4.3 Parsing and optimization of continuous query第78-80页
    4.4 Distributed continuous query第80-81页
    4.5 Continuous query cost model overview第81-90页
        4.5.1 Model parameters第83-84页
        4.5.2 Basic stream operators第84-86页
        4.5.3 Stream characteristics第86-88页
        4.5.4 Operators cost model第88-90页
    4.6 Summary第90-91页
CHAPTER Ⅴ. DISTRIBUTION OF CONTINUOUS QUERIES USING GRAPH PARTITIONING第91-107页
    5.1 Motivation第91页
    5.2 Distributed data stream processing第91-92页
    5.3 Basic KLS algorithm for graph partition problem第92-95页
    5.4 Proposed Algorithm第95-102页
        5.4.1 Similarity measurement using modified SimRank第96-98页
        5.4.2 The template function construction第98-100页
        5.4.3 Similarity Carrying Ant Model (SCAM)第100-102页
    5.5 Experiments第102-106页
        5.5.1 SCAM model Vs original ant model performance evaluation第103-104页
        5.5.2 Ant clustering Vs other graph portioning performance evaluation第104-106页
    5.6 Summary第106-107页
CHAPTER Ⅵ. CONTINUOUS QUERY PROCESSING SIMULATION USING DISCRETE EVENT SIMULATION第107-121页
    6.1 Motivation第107页
    6.2 Basic query processing model第107-108页
    6.3 Discrete event system(DES)simulation overview第108-113页
        6.3.1 The process-oriented simulation scheme第109-110页
        6.3.2 Discrete-event simulation languages第110-113页
    6.4 Simulation framework for continuous query plan第113-115页
        6.4.1 Building simulations using OMNeT++第114-115页
        6.4.2 Building the NED files第115页
        6.4.3 Running the simulation and analyzing the results第115页
    6.5 Components of the simulation framework第115-120页
        6.5.1 DataStream第116-117页
        6.5.2 Queues第117页
        6.5.3 Operator第117-119页
        6.5.4 Data stream sink第119页
        6.5.5 Scheduler第119页
        6.5.6 StatsCollector第119-120页
    6.6 Summary第120-121页
CHAPTER Ⅶ.ADAPTIVE SCHEDULING OF CONTINUOUS QUERY OPERATORS第121-138页
    7.1 Motivation第121页
    7.2 Operator scheduling strategies第121-122页
    7.3 Chain scheduling algorithm第122-124页
    7.4 Clustered operators scheduling(COS)第124-126页
        7.4.1 Problem statement第124-125页
        7.4.2 COS architecture第125-126页
    7.5 Overview of data clustering algorithms第126-129页
        7.5.1 K-means第127-128页
        7.5.2 S-means:similarity driven clustering第128-129页
    7.6 Operators clustering第129-131页
    7.7 Experiments第131-136页
        7.7.1 Experiment setting第132页
        7.7.2 Performance comparison第132-135页
        7.7.3 Scalability comparison第135-136页
        7.7.4 Robustness comparison第136页
    7.8 Summary第136-138页
CHAPTER Ⅷ.CONCLUSIONS第138-140页
REFERENCES第140-152页
RESEARCH PUBLICATIONS第152-153页

论文共153页,点击 下载论文
上一篇:Security and Energy Performance Optimization in Wireless Sensor Networks
下一篇:胃癌CDK2表达及其与临床病理预后特点的关系及NRS-2002评价胃癌患者术前营养风险的初步探索