首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机软件论文--程序设计、软件工程论文--程序设计论文

面向分布式医学数据分析的隐私保护SVM模型研究

摘要第5-7页
ABSTRACT第7-8页
Chapter 1 Introduction第16-26页
    1.1 Background and Motivations第16-17页
    1.2 Medical Data Overview第17页
    1.3 Privacy Preserving of Distributed Data Mining第17-19页
    1.4 Privacy Preserving Techniques第19-20页
        1.4.1 Data Randomization Techniques第19页
        1.4.2 Data Anonymization Techniques第19-20页
        1.4.3 Data Encryption Techniques第20页
    1.5 Missing Data Overview第20-22页
        1.5.1 Missing Data Mechanisms第20-21页
        1.5.2 Techniques for Dealing with Missing Data第21-22页
    1.6 Multiple Imputation Overview第22-23页
    1.7 Popular Privacy Preserving Distributed Data Mining Directions第23-24页
        1.7.1 Original Data Modification第23-24页
        1.7.2 Mining Results Modification第24页
        1.7.3 Cryptographic Methods第24页
    1.8 Dissertation Organization第24-26页
Chapter 2 Related Work and Literature Review第26-40页
    2.1 Introduction第26-27页
    2.2 Cryptographic Methods for Privacy Preserving第27-30页
        2.2.1 Secure Multiparty Computation第27-28页
        2.2.2 Homomorphic Encryption第28-30页
    2.3 Distributed Classification Algorithms第30-32页
        2.3.1 Decision-Tree Algorithms第30页
        2.3.2 k-Nearest Neighbors (KNN) Algorithm第30-32页
        2.3.3 Support Vector Machine (SVM) Algorithm第32页
    2.4 Privacy Preserving of Distributed SVM第32-35页
        2.4.1 PPDSVM over Vertically Partitioned Data第33-34页
        2.4.2 PPDSVM over Horizontally Partitioned Data第34-35页
    2.5 Imputation Data Techniques第35-38页
        2.5.1 Maximum Likelihood Techniques第36-37页
        2.5.2 Multiple Imputation Techniques第37-38页
    2.6 Limitations of PPDDM第38-39页
    2.7 Summary第39-40页
Chapter 3 Privacy Preserving in Distributed SVM Data Mining on Vertical Partitioned Data第40-55页
    3.1 Introduction第40-42页
    3.2 Related Work第42-43页
    3.3 Preliminary第43-46页
        3.3.1 SVM Overview第43-45页
        3.3.2 Homomorphic Encryption第45-46页
    3.4 Privacy Preserving of SVM over Vertical Partitioned Data第46-50页
        3.4.1 Model Architecture第46-49页
        3.4.2 Training Protocol第49-50页
    3.5 Experiment and Discussion第50-54页
        3.5.1 Experiment第50-53页
        3.5.2 Discussion第53-54页
    3.6 Summary第54-55页
Chapter 4 Privacy-Preserving of SVM over Vertically Partitioned with Imputing Missing Data第55-76页
    4.1 Introduction第55-57页
    4.2 Related Works第57-59页
    4.3 Preliminary第59-60页
        4.3.1 Missing Data第59-60页
        4.3.2 Paillier Cryptosystem第60页
    4.4 Privacy-preserving of SVM over Vertically Partitioned with Imputing Data第60-66页
        4.4.1 Multivariate Imputation via Chained Equations (MICE)第60-63页
        4.4.2 Privacy Model Architecture第63-66页
    4.5 Experiments and Discussion第66-75页
        4.5.1 Experiments第66-69页
        4.5.2 The Accuracy of our Protocol第69-70页
        4.5.3 The Performance Analysis第70-73页
        4.5.4 Discussion第73-75页
    4.6 Summary第75-76页
Chapter 5 Privacy-Preserving of Distributed SVM with Imputing Missing Data over Horizontally Partitioned Data第76-99页
    5.1 Introduction第76-79页
    5.2 Related work第79-80页
    5.3 Preliminary第80-81页
        5.3.1 Multiple Imputation Overview第80-81页
        5.3.2 Paillier Cryptosystem Overview第81页
    5.4 Framework of the Proposed Protocol第81-89页
        5.4.1 Handling Missing Data第81-84页
        5.4.2 Medium Layer: Privacy Preserving Data第84-88页
        5.4.3 Top Layer: Building the Global SVM classifier Model第88-89页
    5.5 Experiments and Discussion第89-98页
        5.5.1 Datasets第89-90页
        5.5.2 Effectiveness第90-91页
        5.5.3 Accuracy第91-92页
        5.5.4 Performance Analysis第92-98页
    5.6 Summary第98-99页
Chapter 6 Conclusion and Future Work第99-101页
    6.1 Conclusions第99-100页
    6.2 Future Work第100-101页
Acknowledgements第101-102页
References第102-111页
Research Results Achieved During the Study for Doctoral Degree第111页

论文共111页,点击 下载论文
上一篇:大数据相关关系挖掘的若干关键问题研究
下一篇:Advanced Intelligent Transportation System with Efficient Big Data Handling