首页--生物科学论文--分子生物学论文--基因工程(遗传工程)论文

通过MYPT1磷酸化组成性调节平滑肌肌张力维持

Abstract第6-7页
中文摘要第8-11页
Abbreviations/Acronyms第11-14页
Chapter Ⅰ A Brief Review:Smooth muscle signal transduction in health and disease第14-56页
    1. Characteristics of smooth muscle and its physiological function第14-20页
        1.1 Structure of smooth muscle第16-19页
            1.1.1 Actin thin filaments第16-17页
            1.1.2 Myosin thick filaments第17-18页
            1.1.3 Intermediate filaments第18页
            1.1.4 Other proteins of the contractile apparatus第18-19页
        1.2 Smooth muscle phenotype switch第19-20页
    2. Mechanisms of smooth muscle contraction第20-42页
        2.1 Excitation-contraction coupling and Ca~(2+) movements第23-25页
            2.1.1 Electromechanical coupling第23-24页
            2.1.2 Pharmacomechanical coupling第24页
            2.1.3 Ca~(2+)movements第24-25页
        2.2 Kinases and regulatory light chain phosphorylation第25-32页
            2.2.1 Dependence of force and RLC phosphorylation第26页
            2.2.2 RLC phosphorylation by Ca~(2+) dependent MLCK第26-28页
            2.2.3 RLC phosphotylation by Ca~(2+) independent kinase第28-32页
        2.3 Phosphatase and regulation of Ca~(2+) sensitivity第32-42页
            2.3.1 Myosin light chain phosphatease第33-38页
            2.3.2 Ca~(2+) sensitivity第38-42页
    3. Smooth muscle in disease states第42-44页
    4. References第44-56页
Chapter Ⅱ Constitutive phosphorylation of MYPT1 Thr694 regulates force maintenance ofsmooth muscle第56-87页
    1. Summary第57页
    2. Introduction第57-59页
    3. Materials and Methods第59-65页
        3.1 Generation of Mypt1 mutant(T694A)mice第59-60页
        3.2 Genotyping of mice第60-61页
        3.3 Chemicals and antibodies第61页
        3.4 Preparation of mouse embryonic fibroblasts(MEFs)第61页
        3.5 Karyotyping analysis第61-62页
        3.6 Animals and tissues preparation第62页
        3.7 Analysis of smooth muscle contractility第62-63页
        3.8 Protein sample preparation and Western blotting assay第63-64页
        3.9 Histology第64页
        3.10 Data analysis第64-65页
    4. Results第65-81页
        4.1 Characterization of dynamic phosphorylation of MYPT1 in bladder smooth muscle第65-67页
        4.2 Generation and characterization of Myptl knock-in mice(T694A)第67-74页
        4.3 T694A mutant smooth muscle displayed reduced sustained force第74-76页
        4.4 T694A mutation reduces RLC phosphorylation at sustained phase第76-79页
        4.5 Force regulation by MYPT1 T694 phosphorylation is independent of ROCK and PKC signaling第79-81页
        4.6 ZIPK is not the native kinase for MYPT1 Thr694第81页
    5. Discussion第81-84页
    6. References第84-87页
Chapter Ⅲ Inducible Thr852 phosphorylation is not necessary for smooth musclecontraction第87-116页
    1. Summary第88页
    2. Introduction第88-90页
    3. Materials and Methods第90-95页
        3.1 Generation of Mypt1 mutant(T852A)mice第90页
        3.2 Genotyping of mice第90-91页
        3.3 Chemicals and antibodies第91页
        3.4 Animals and tissues preparation第91-92页
        3.5 Bladder smooth muscle contractility第92页
        3.6 Aortic artery contractility第92-93页
        3.7 Protein sample preparation and western blot assay第93-94页
        3.8 Histology第94-95页
        3.9 Data analysis第95页
    4. Results第95-111页
        4.1 Generation of Myptl knock-in mice(T852A)第95-102页
        4.2 T852A did not apparently affect contractile behaviors and RLC phosphorylation in bladder smooth muscle第102-106页
        4.3 Thr852 phosphorylation is not necessary for phasic smooth muscle第106-107页
        4.4 Thr852 phosphorylation is not required for tonic smooth muscle contraction(aorta)第107-108页
        4.5 T852A mutation doesn't resist to ROCK inhibitor第108-111页
    5. Discussion第111-114页
    6. References第114-116页
致谢第116-118页
Publications第118-120页

论文共120页,点击 下载论文
上一篇:企业社会责任建设中的政府行为研究--基于元治理理论的视角
下一篇:华北油田京11区块弱碱复合驱结垢规律及防治技术研究