摘要 | 第1-5页 |
Abstract | 第5-7页 |
引言 | 第7-11页 |
1 预备知识 | 第11-15页 |
·在R~s上的散乱数据插值 | 第11-12页 |
·散乱数据插值问题 | 第11-12页 |
·使用距离矩阵插值 | 第12页 |
·径向基函数插值 | 第12-15页 |
·径向基函数 | 第13-14页 |
·径向基函数插值 | 第14-15页 |
2 非对称径向基函数配点法基本原理 | 第15-17页 |
·Kansa法 | 第15-16页 |
·对于Kansa法的讨论 | 第16-17页 |
3 非对称径向基函数配点法在地下水数值模拟中的应用 | 第17-34页 |
·用非对称径向基函数配点法解二维地下水稳定流问题 | 第17-29页 |
·基本原理 | 第17-20页 |
·数值算例 | 第20-29页 |
·用非对称径向基函数配点法解二维地下水非稳定流问题 | 第29-32页 |
·基本原理 | 第29-31页 |
·数值算例 | 第31-32页 |
·用非对称径向基函数配点法解三维地下水稳定流问题 | 第32-34页 |
结论 | 第34-35页 |
参考文献 | 第35-37页 |
攻读硕士学位期间发表学术论文情况 | 第37-38页 |
致谢 | 第38页 |