首页--数理科学和化学论文--物理学论文--真空电子学(电子物理学)论文--凝聚态物理学论文

掺杂莫特绝缘体和近藤绝缘体的扫描隧道显微学研究

摘要第3-4页
Abstract第4页
List of Abbreviations第7-9页
Chapter 1 Introduction第9-28页
    1.1 The motivations to study the strong correlation physics第9-17页
        1.1.1 Cuprates as doped Mott insulators第10-13页
        1.1.2 Kondo lattice第13-17页
        1.1.3 Summary第17页
    1.2 Scanning Tunneling Microscopy第17-28页
        1.2.1 The tunneling current formalism第18-21页
        1.2.2 Topographic imaging and spectroscopy第21-22页
        1.2.3 Spectroscopic imaging第22-24页
        1.2.4 Tip and sample preparation第24-26页
        1.2.5 Instrumentation第26-28页
Chapter 2 Relation between the Mott and superconducting phase in cuprates第28-46页
    2.1 Backgroun第28-33页
        2.1.1 Charge transfer type Mott insulator第28-30页
        2.1.2 What determines T_c in superconductors第30-32页
        2.1.3 Materials of choice第32-33页
    2.2 Experiments第33-40页
        2.2.1 Charge transfer gap in CCOC and 2-layer CCOC第34-37页
        2.2.2 Charge transfer gap in Bi-2201 and Bi-2212第37-39页
        2.2.3 Relation between the charge transfer gap and T_(c,max)第39-40页
    2.3 Discussions第40-44页
        2.3.1 Mottness and superconductivity第40-43页
        2.3.2 Tuning the charge transfer gap第43-44页
    2.4 Summary第44-46页
Chapter 3 Pair density ware in severely underdoped Bi_2Sr_2CaCu_2O_(8+δ)第46-72页
    3.1 Introduction第46-54页
        3.1.1 Electronic orders besides the parent and superconducting phases第46-48页
        3.1.2 Fulde-Forrell-Larkin-Ovchinnikov and pair density ware state第48-51页
        3.1.3 PDW state in cuprates第51-54页
    3.2 Characterization of the T_c ≈ 10 K Bi-2212 sample第54-60页
        3.2.1 Topography and spectroscopy第55-57页
        3.2.2 Charge order第57-58页
        3.2.3 Bogoliubov quasiparticle interference第58-60页
    3.3 Detection of the pair density wave第60-65页
        3.3.1 Second derivative analysis第61-62页
        3.3.2 Periodic modulation of the coherence peak revealed by line cuts第62-64页
        3.3.3 The PDW state visualized by D and H mapping第64-65页
    3.4 Discussions第65-71页
        3.4.1 Absence of the SC gap size modulation第65-67页
        3.4.2 Relation bewteen PDW and CO第67-69页
        3.4.3 Doping evolution of PDW and CO第69-71页
    3.5 Summary第71-72页
Chapter 4 Correlated many-body effects in the Kondo insulator SmB_6第72-100页
    4.1 Introduction第72-77页
        4.1.1 The Kondo insulator SmB_6第72-74页
        4.1.2 Transport anomaly第74-75页
        4.1.3 Topology第75-77页
    4.2 Sample characterization第77-83页
    4.3 Varying-temperature spectroscopy study第83-95页
        4.3.1 Experiments第83-85页
        4.3.2 Theory of Fano and co-tunneling model第85-88页
        4.3.3 The co-tunneling model plus Gaussian fit to the data第88-93页
        4.3.4 Temperature evolution of the gap and the in-gap state第93-95页
    4.4 Searching for topological SSs第95-98页
        4.4.1 Previous STM results on topological insulators第95-96页
        4.4.2 Absence of QPI signal in SmB_6第96-98页
    4.5 Summary第98-100页
Chapter 5 Conclusion第100-103页
References第103-114页
Acknowledgements第114-116页
个人简历、在学期间发表的学术论文与研究成果第116-117页

论文共117页,点击 下载论文
上一篇:不确定性条件下智能车辆动态环境认知方法研究
下一篇:吸波涂层/电磁超材料的设计及其在圆极化天线中的应用