首页--数理科学和化学论文--概率论与数理统计论文--概率论(几率论、或然率论)论文--随机过程论文--随机微分方程论文

倒向随机Volterra积分方程的理论及相关问题

目录第1-7页
摘要第7-19页
Abstract第19-32页
第一章 引言第32-40页
 §1.1 倒向随机Volterra积分方程的对称解及应用第32-33页
 §1.2 倒向随机Volterra积分方程:新的研究思路第33-34页
 §1.3 倒向随机Volterra积分方程的比较定理第34-35页
 §1.4 正倒向随机Volterra积分方程的最大值原理及应用第35-37页
 §1.5 平均场倒向随机Volterra积分方程及应用第37-38页
 §1.6 本文所用符号第38-40页
第二章 倒向随机Volterra积分方程的对称解及应用第40-60页
 §2.1 对称解的适定性第40-52页
  §2.1.1 若干引理第40-42页
  §2.1.2 对称解的存在唯一性第42-47页
  §2.1.3 关于对称解的若干推论第47-52页
 §2.2 对称解的特性及同其他解的联系第52-57页
  §2.2.1 对称解同其他解的关系第52-55页
  §2.2.2 对称解的特性第55-57页
 §2.3 一类关于过程的动态相容风险度量第57-60页
第三章 倒向随机Volterra积分方程:新的研究思路第60-76页
 §3.1 预备知识第60-61页
 §3.2 李普希兹条件的情形第61-69页
  §3.2.1 一个基本估计第61-66页
  §3.2.2 李普希兹条件下的解的存在唯一性第66-69页
 §3.3 非李普希兹条件的情形第69-73页
 §3.4 例子第73-76页
第四章 倒向随机Volterra积分方程的比较定理第76-104页
 §4.1 预备知识第76-77页
 §4.2 关于FSDEs,FSVIEs,BSDEs的比较定理第77-91页
  §4.2.1 正向随机微分方程解的比较定理第77-82页
  §4.2.2 倒向随机微分方程解的比较定理第82-85页
  §4.2.3 正向随机Volterra方程的比较定理第85-91页
 §4.3 倒向随机Volterra积分方程的比较定理第91-104页
  §4.3.1 关于特殊适应解的比较定理第91-99页
  §4.3.2 关于适应M-解的比较定理第99-102页
  §4.3.3 关于其他形式解的相关结论第102-104页
第五章 正倒向随机Volterra积分方程的最优控制及应用第104-124页
 §5.1 最优控制问题阐述第104-105页
 §5.2 最大值原理第105-112页
  §5.2.1 变分方程和收敛性结果第105-108页
  §5.2.2 最大值原理第108-112页
 §5.3 在相关领域的应用第112-124页
  §5.3.1 正倒向线性二次问题第112-116页
  §5.3.2 在两个经济学模型中的应用第116-120页
  §5.3.3 一个线性正倒向系统的控制问题第120-124页
第六章 平均场倒向随机Volterra积分方程及其应用第124-150页
 §6.1 预备知识第124-127页
 §6.2 平均场正向随机Volterra积分方程第127-130页
 §6.3 平均场倒向随机Volterra积分方程解的适定性第130-138页
  §6.3.1 一类特殊平均场倒向积分方程第130-132页
  §6.3.2 一般情形第132-138页
 §6.4 对偶原理第138-143页
 §6.5 平均场随机积分方程的最优控制问题第143-150页
参考文献第150-156页
作者简介第156-158页
致谢第158-159页
学位论文评阅及答辩情况表第159页

论文共159页,点击 下载论文
上一篇:以卤代苯酚为前体物的二噁英气相形成机理研究
下一篇:高维特征筛选和时间序列下的模型选择