莱布尼茨计算器算法思想研究
摘要 | 第4-5页 |
ABSTRACT | 第5-6页 |
第一章 绪论 | 第11-21页 |
1.1 问题提出 | 第11页 |
1.2 文献综述 | 第11-18页 |
1.2.1 国外研究情况 | 第12-16页 |
1.2.2 国内研究情况 | 第16-18页 |
1.3 研究目的和意义 | 第18-19页 |
1.4 研究方法和内容 | 第19-21页 |
1.4.1 研究方法 | 第19页 |
1.4.2 研究内容 | 第19-21页 |
第二章 莱布尼茨计算器算法思想的本质和特征 | 第21-29页 |
2.1 莱布尼茨计算器算法思想的本质 | 第21-25页 |
2.2 莱布尼茨计算器算法思想的特征 | 第25-29页 |
2.2.1 还原主义 | 第25-26页 |
2.2.2 计算主义 | 第26-27页 |
2.2.3 普遍主义 | 第27-28页 |
2.2.4 理性主义 | 第28-29页 |
第三章 莱布尼茨计算器算法思想的形成 | 第29-47页 |
3.1 莱布尼茨计算器算法思想的孕育过程 | 第29-34页 |
3.1.1 古希腊理性中的算法思想 | 第29-32页 |
3.1.2 近代理性中的算法思想 | 第32-34页 |
3.2 莱布尼茨十进制乘法计算器的算法思想 | 第34-41页 |
3.2.1 对帕斯卡加法计算器的改进 | 第34-40页 |
3.2.2 十进制乘法计算器的改进 | 第40-41页 |
3.3 莱布尼茨二进制计算器的算法思想 | 第41-47页 |
第四章 莱布尼茨计算器算法思想的影响和发展 | 第47-55页 |
4.1 莱布尼茨计算器算法思想的局限 | 第47-48页 |
4.2 布尔代数对莱布尼茨计算器算法思想改进 | 第48-52页 |
4.3 图灵机对莱布尼茨计算器算法思想的发展 | 第52-54页 |
4.4 莱布尼茨算法思想与人工智能的关系 | 第54-55页 |
结语 | 第55-57页 |
参考文献 | 第57-60页 |
致谢 | 第60-61页 |
研究成果及发表的论文 | 第61-62页 |
作者和导师简介 | 第62-63页 |
附件 | 第63-64页 |