首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机软件论文--程序设计、软件工程论文--程序设计论文

轨迹数据上的并行查询处理

摘要第4-6页
Abstract第6-8页
Chapter 1 Introduction第16-48页
    1.1 Introduction第16-18页
    1.2 Trajectory query第18-27页
        1.2.1 Similarity introduction第20-24页
        1.2.2 Spatio-temporal similarity第24-27页
    1.3 Trajectory big data processing第27-33页
        1.3.1 Spatial data performance based on Map Reduce第27-29页
        1.3.2 Trajectory data processing based on distributed platforms第29-33页
    1.4 Trajectory query processing based on distributed platforms第33-42页
        1.4.1 Spatial query based on Hadoop system第34-36页
        1.4.2 Spatial query based on Spark system第36-37页
        1.4.3 Mining trajectory big data processing第37-40页
        1.4.4 Mining frequent trajectory big data processing第40-42页
    1.5 The position of our work第42-45页
    1.6 The main research content for dissertation第45-48页
Chapter 2 Top-K Query Processing On Trajectory Data第48-80页
    2.1 Introduction第48-50页
    2.2 The structure of the spatial index (DTR-TREE index)第50-60页
        2.2.1 The construction of the index第51-56页
        2.2.2 The maintenance of the index第56-60页
    2.3 Query processing based on the distance and activity set第60-63页
    2.4 Optimization method of trajectory query algorithm第63-66页
    2.5 Experiments第66-79页
        2.5.1 Experimental settings第66-70页
        2.5.2 Experimental results第70-79页
    2.6 Summary第79-80页
Chapter 3 Frequent Activity-set Query Processing In Big Trajectory Data第80-107页
    3.1 Introduction第80-85页
    3.2 Mining frequent trajectory based on query distance第85-87页
    3.3 Spatial mining index based on distributed R-Tree indexes第87-91页
        3.3.1 DMTR-Tree structure第88-89页
        3.3.2 Inverted lists optimization第89-91页
    3.4 Parallel query processing based on frequent activity set第91-97页
        3.4.1 Phase one第92-95页
        3.4.2 Phase two第95-97页
    3.5 Performance evaluation第97-106页
        3.5.1 Speed performance analysis第97-100页
        3.5.2 Query processing evaluation第100-106页
    3.6 Summary第106-107页
Chapter 4 Skyline Query Processing For Trajectory Data第107-133页
    4.1 Introduction第107-110页
    4.2 The retrieval functions for trajectory query problem第110-112页
        4.2.1 The trajectory spatial retrieval function第110-111页
        4.2.2 The trajectory activity retrieval function第111-112页
    4.3 Trajectory skyline query processing algorithm第112-119页
    4.4 Skyline Query Processing For Incomplete Historical Activity Data第119-120页
    4.5 Problem definition for incomplete activity data based on optimized functions105第120-121页
    4.6 An optimized trajectory skyline algorithm based on missing activity-setand distance metric第121-126页
        4.6.1 Index traversing algorithm第121-122页
        4.6.2 Parallel algorithm for missing activity problem in short trajectories第122-124页
        4.6.3 Handling the missing activity problem in long trajectories第124-126页
    4.7 Experimental results and evaluations第126-132页
        4.7.1 Experimental settings第126-127页
        4.7.2 Experimental results第127页
        4.7.3 Experimental results of trajectory skyline query processing algorithm第127-128页
        4.7.4 Experimental results of trajectory skyline algorithm based on missingactivity-set and distance metric第128-132页
    4.8 Summary第132-133页
Conclusion and future works第133-136页
References第136-146页
Papers published in the period of PH.D. education第146-149页
Acknowledgements第149-150页
Resume第150页

论文共150页,点击 下载论文
上一篇:基于结构和判别语义嵌入的图像表征学习研究
下一篇:基于压缩感知的天文图像压缩及去噪重建算法研究