首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--计算机网络论文--一般性问题论文

Hybrid Intrusion Detection with Clustering-Outlier Technique and Incremental SVM Classification

ABSTRACT第8-12页
摘要第13-20页
Chapter 1.Introduction第20-29页
    1.1 Background and Significance of the Research第20-22页
    1.2 Research Objectives第22-23页
    1.3 Solutions to Problems and their Contributions第23-27页
    1.4 Thesis Organization第27-29页
Chapter 2.Literature Review第29-50页
    2.1 Related work in IDS developments第29-30页
    2.2 Developments in k-Means/Medoids and Outlier Techniques第30-33页
    2.3 Works related to NB and SVM Classification第33-41页
    2.4 Recent work in Incremental SVM Classification第41-45页
    2.5 Supervised/Unsupervised and Incremental Learning第45-49页
    2.6 Shortcomings of the Current Researches第49-50页
Chapter 3.k-Medoids with Naive Bayes Classification第50-67页
    3.1 System Model and Problem Description第50-51页
    3.2 General Description of the Solution第51-52页
    3.3 Comparision between k-Means and k-Medoids第52-53页
    3.4 The Proposed Hybrid Approach第53-59页
    3.5 Experimental Results and Analysis第59-66页
        3.5.1 Selection of Experimental Data第60页
        3.5.2 Description of Experimental Data第60-61页
        3.5.3 Data Pre-processing第61页
        3.5.4 The Experimental Procedure第61-62页
        3.5.5 Performance Evaluation第62-63页
        3.5.6 Analysis of the Results第63-66页
    3.6 Chapter Summary第66-67页
Chapter 4.k-Medoids-Outlier with SVM Classification第67-83页
    4.1 System Model and Problem Description第67-68页
    4.2 General Description of the Solution第68页
    4.3 The Proposed Approach第68-74页
    4.4 Experimental Results and Analysis第74-82页
        4.4.1 Selection of Experimental Data第75-76页
        4.4.2 Description and Samples of Experimental Data第76页
        4.4.3 Data Pre-processing第76-77页
        4.4.4 The Experimental Procedure第77页
        4.4.5 Performance Evaluation第77-80页
        4.4.6 Analysis of the Results第80-82页
    4.5 Chapter Summary第82-83页
Chapter 5.Incremental Support Vector Machine with CSV-ISVM第83-105页
    5.1 System Model and Problem Description第83-84页
    5.2 General Description of the Solution第84页
    5.3 Candidate Support Vectors based Incremental SVM第84-95页
        5.3.1 The Improved Concentric Circle Method第86-89页
        5.3.2 The Half-Partition Strategy第89-93页
        5.3.3 CSV Selection Algorithm and CSV-ISVM Algorithm第93-95页
    5.4 Experimental Results and Analysis第95-103页
        5.4.1 Experimental Data第95-96页
        5.4.2 Description and Samples of Experimental Data第96页
        5.4.3 Data Pre-processing第96页
        5.4.4 The Experimental Detail第96-97页
        5.4.5 Performance Evaluation and Analysis第97-103页
    5.5 Chapter Summary第103-105页
Chapter 6. Concluding Remarks第105-107页
    6.1 Conclusion第105-106页
    6.2 Future Work第106-107页
References第107-122页
Published Papers第122-123页
Acknowledgement第123-124页
Appendix Ⅰ:Features of Kyoto 2006+ datasets第124-128页
Appendix Ⅱ:Experimental Data Samples第128-136页

论文共136页,点击 下载论文
上一篇:分布估计算法性能及分类研究
下一篇:云环境下空间信息服务组合的自治愈关键技术研究