首页--数理科学和化学论文--数学论文--代数、数论、组合理论论文--组合数学(组合学)论文

Riordan阵,发生函数在组合恒等式中的应用

摘要第4-5页
ABSTRACT第5页
第一章 引言第7-14页
    1.1 研究背景第7-8页
    1.2 研究方法第8-10页
        1.2.1 发生函数方法第8-9页
        1.2.2 Riordan阵方法第9-10页
    1.3 本文主要研究内容第10-11页
    1.4 相关符号及基本概念第11-14页
        1.4.1 常用符号第11页
        1.4.2 发生函数的相关概念第11-13页
        1.4.3 Riordan的相关概念第13-14页
第二章 关于高阶Changhee数与多项式的组合恒等式第14-24页
    2.1 预备知识第14-16页
    2.2 高阶Changhee数与特殊组合数之间的关系式第16-20页
    2.3 高阶Changhee多项式与特殊组合多项式之间的关系式第20-24页
第三章 有关广义高阶Apostol Changhee多项式的一些恒等式第24-33页
    3.1 预备知识第24-25页
    3.2 广义高阶Apostol Changhee多项式的基本性质第25-27页
    3.3 广义高阶Apostol Changhee多项式Ch_n~((α))(x;λ)与广义高阶Apostol Daehee多项式D_n~((α))(x;λ)之间的关系式第27-30页
    3.4 含广义高阶Apostol Changhee多项式的若干恒等式第30-33页
第四章 总结与展望第33-34页
参考文献第34-36页
致谢第36-37页
攻读硕士学位期间完成的论文第37页
攻读硕士学位期间参加的会议第37页

论文共37页,点击 下载论文
上一篇:非结构网格下对流项离散的无振荡格式
下一篇:有界无穷维Hamilton算子的局部谱性质