首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机软件论文--程序设计、软件工程论文--程序设计论文

Optimized Healthcare Decision Support Method Based on Predictive Mining Techniques

DEDICATION第5-6页
ABSTRACT第6-7页
摘要第8-12页
ABBREVIATIONS第12-13页
Table of Contents第13-16页
Table of Tables第16-17页
Table of Figures第17-19页
CHAPTER 1:INTRODUCTION第19-25页
    1.1 Introduction第19-20页
    1.2 Motivation第20页
    1.3 Problem Definition第20-21页
    1.4 Objectives of the Study第21-22页
    1.5 Significance of the Study第22-23页
    1.6 Thesis Outline第23-24页
    1.7 Permission to Carry out Research第24页
    1.8 Summary第24-25页
CHAPTER 2:BACKGROUND AND LITERATURE REVIEW第25-43页
    2.1 History of BI第26页
    2.2 The Future of BI第26-29页
    2.3 Data-Warehouse第29-32页
        2.3.1 History of Data-Warehouse第31-32页
    2.4 Decision Support Systems第32-33页
        2.4.1 Origins of DSS第32-33页
        2.4.2 DSS Architecture第33页
    2.5 Data-Mining第33-39页
        2.5.1 Knowledge Discovery第34页
        2.5.2 Data Mining Inception第34-36页
        2.5.3 Modeling Techniques第36页
        2.5.4 DM Functions第36-38页
        2.5.5 DM Algorithms第38-39页
    2.6 Purpose of Literature Review第39页
    2.7 Literature Review第39-41页
    2.8 Summary第41-43页
CHAPTER 3:METHODOLOGY第43-49页
    3.1 Introduction第43-44页
    3.2 Strategy for our Predictive Modeling第44-47页
        3.2.1 The CRISP-DM Model第44-45页
        3.2.2 Phases and Tasks第45-46页
        3.2.3 Oracle Data Mining Functionality第46页
        3.2.4 DM in the Data-Base Kernel advantages observed第46-47页
        3.2.5 Classification and Prediction Modeling第47页
    3.3 Summary第47-49页
CHAPTER 4:DESIGN第49-64页
    4.1 Introduction第49页
    4.2 Research Process第49-53页
        4.2.1 Data Collection第50页
        4.2.2 Data Pre-Processing and Cleaning第50-51页
        4.2.3 Data Transformation第51-52页
        4.2.4 Building a Basic Data-Warehouse第52-53页
    4.3 DM Design Process第53-57页
        4.3.1 Software tools Used第54-55页
        4.3.2 About Oracle & Its Strengths第55-56页
        4.3.3 Oracle Database 11g Release 2(11.2.0.2)Oracle DM&its Functionality第56-57页
    4.4 Classification Decision Support Mining Model第57-62页
    4.5 Summary第62-64页
CHAPTER 5:IMPLEMENTATION & THE RESULTS第64-87页
    5.1 Introduction第64页
    5.2 DSS Architecture第64-69页
    5.3 Building the Classification and Prediction Model第69-72页
        5.3.1 Classification and Prediction Model Training第71-72页
    5.4 Analyzing the Model Results第72-78页
        5.4.1 Comparing Our OI Classification and Prediction Model第73-74页
        5.4.2 Overall Performance Analysis for the YES-Class第74页
        5.4.3 Performance Matrix/Confusion Matrices第74-75页
        5.4.4 ROC Curve Analysis第75-76页
        5.4.5 Lift Cumulative Positive & Negative Results Analysis第76-77页
        5.4.6 Profit Analysis Results第77-78页
    5.5 Deploying the Support Vector Machine Model第78-86页
        5.5.1 About the SVM第79-80页
        5.5.2 How SVM Works第80-82页
        5.5.3 Results for our OI SVM Prediction Model第82页
        5.5.4 OI SVM Prediction Model's Performance Matrix第82-85页
        5.5.5 OI SVM Prediction Model's ROC Analysis Results第85页
        5.5.6 OI SVM Prediction Model's LIFT Analysis Results第85-86页
    5.6 Summary第86-87页
CHAPTER 6:CONCLUSIONS第87-90页
    6.1 Introduction第87页
    6.2 Conclusions第87-88页
    6.3 Limitations of the Study第88页
    6.4 Recommendations for Future Study第88-90页
ACKNOWLEDGEMENT第90-91页
REFERENCES第91-95页
APPENDICES第95-104页
    APPENDIX A:ABOUT BOTSWANA第95-97页
    APPENDIX B:APPROVAL LETTER FROM THE MINISTRY OF HEALTH第97-98页
    APPENDIX C:DATA MIGRATION SOURCE CODE第98-104页
    APPENDIX D:MODEL BUILDING SOURCE CODE第104页

论文共104页,点击 下载论文
上一篇:OLAP中数据立方体增量计算方法的研究
下一篇:基于无线网络的社区卫生移动电子政务平台终端的设计与实现