摘要 | 第1-5页 |
ABSTRACT | 第5-8页 |
第一章 绪论 | 第8-13页 |
·课题的目的及意义 | 第8页 |
·图像识别发展概况及其应用趋势 | 第8-9页 |
·目标识别技术的发展与现状 | 第9-10页 |
·小波神经网络的特点及发展状况 | 第10-11页 |
·小波神经网络的特点 | 第10页 |
·国内的研究现状 | 第10-11页 |
·本论文的主要工作 | 第11-13页 |
第二章 交通标志自动识别系统的构成及技术实现 | 第13-17页 |
·系统软件开发环境简介 | 第13-14页 |
·图像采集及传输模块 | 第14-16页 |
·图像识别模块 | 第16-17页 |
第三章 图像的预处理及区域分割 | 第17-28页 |
·图像的预处理 | 第17-19页 |
·图像噪声来源及其统计模型 | 第17-18页 |
·常见噪声消除方法分析 | 第18-19页 |
·图像的分割 | 第19-27页 |
·基于灰度统计特征参数分割法 | 第20-23页 |
·基于颜色分布目标分割法 | 第23-27页 |
·本章小结 | 第27-28页 |
第四章 目标图像的不变性特征提取 | 第28-44页 |
·特征与特征提取的基本概念 | 第28-30页 |
·特征的分类 | 第28页 |
·特征的三要素 | 第28页 |
·目标图像识别的特殊性 | 第28-29页 |
·特征提取 | 第29-30页 |
·图像的矩不变特征 | 第30-43页 |
·常规矩 | 第31-32页 |
·Zernike矩 | 第32页 |
·平移、尺度变化的图像规格化处理 | 第32-39页 |
·小波分析的矩不变量 | 第39-43页 |
·本章小结 | 第43-44页 |
第五章 基于小波神经网络的交通标志识别 | 第44-57页 |
·引言 | 第44页 |
·基于BP神经网络的交通标志识别 | 第44-49页 |
·BP神经网络结构模型 | 第44-45页 |
·BP网络训练的算法实现 | 第45-47页 |
·BP网络的改进 | 第47-48页 |
·基于BP网络的交通标志识别实验结果及数据分析 | 第48-49页 |
·基于小波神经网络的交通标志识别 | 第49-56页 |
·小波神经网络模型 | 第50-51页 |
·小波神经网络训练算法实现 | 第51-54页 |
·基于小波神经网络的交通标志识别实验结果及数据分析 | 第54-56页 |
·本章小结 | 第56-57页 |
第六章 总结 | 第57-58页 |
·主要工作回顾 | 第57页 |
·本课题今后需进一步研究的地方 | 第57-58页 |
致谢 | 第58-59页 |
参考文献 | 第59-62页 |
附录A 基于颜色差值区域标记法主要程序 | 第62-64页 |
附录B 基于颜色分布目标分割主要方法、函数 | 第64-66页 |
附录C 网络训练识别主要方法、函数 | 第66-71页 |
个人简历 在读期间发表的学术论文 | 第71页 |