首页--医药、卫生论文--内科学论文--心脏、血管(循环系)疾病论文--心脏疾病论文

心脏代谢计算模型的构建及其与电生理机制的耦合实现

摘要第4-5页
Abstract第5页
Chapter 1: Model Introduction第8-18页
    1.1 Introduction第8页
    1.2 Background of Research第8-11页
    1.3 Problem Definition第11-13页
    1.4 Aim and Objectives of the research第13-14页
        1.4.1 Aim第13页
        1.4.2 Objectives第13-14页
    1.5 Scope of the Research第14-16页
        1.5.1 Glycolysis and Fatty Acid Oxidation第14-15页
        1.5.2 TCA Cycle and Ion Dynamics第15-16页
    1.6 Significance of the study第16-17页
    1.7 Funding for the Research第17页
    1.8 Brief Summary第17-18页
Chapter 2: Computational Models of Cardiac Metabolism第18-37页
    2.1 Introduction第18页
    2.2 Cardiac Metabolism: Computational Perspective第18-19页
    2.3 Compartmentalization in Computational Models第19-20页
    2.4 Linking Compartments in Computational Models第20-23页
        2.4.1 The Glucose Transporter第20页
        2.4.2 The Malate-Aspartate Shuttle第20-22页
        2.4.3 The Phosphocreatine Shuttle第22-23页
        2.4.4 The Pyruvate Transporter第23页
    2.5 Survey of Computational Models of Cardiac Metabolism第23-33页
        2.5.1 Models of glycolysis第23-27页
        2.5.2 Models of Mitochondrial Energetics第27-29页
        2.5.3 Models Integrating Glycolysis and Mitochondrial Energetics第29-33页
    2.6 Cardiac Metabolism and Electrophysiology第33-35页
    2.7 Cardiac Electrophysiology and Atrial Fibrillation第35-36页
    2.8 Brief Summary第36-37页
Chapter 3: Model Formulation and Description第37-47页
    3.1 Introduction第37页
    3.2 Description of Cytosolic Energetics第37-42页
        3.2.1 Hexokinase第37-38页
        3.2.2 Phosphoglucose Isomerase第38页
        3.2.3 Phosphofructokinase第38-39页
        3.2.4 Aldolase第39-40页
        3.2.5 Triose Phosphate Isomerase第40页
        3.2.6 Glyceraldehyde 3-Phosphate Dehydrogenase第40页
        3.2.7 Phosphoglycerate Kinase第40-41页
        3.2.8 Phosphoglycerate Mutase第41页
        3.2.9 Enolase第41页
        3.2.10 Pyruvate Kinase第41-42页
    3.3 Description of Mitochondrial Energetics第42页
    3.4 Integrating Model Energetics第42-45页
        3.4.1 Integrating the Glucose Transporter第43页
        3.4.2 Integrating the Malate-Aspartate Shuttle第43-44页
        3.4.3 Integrating the Phosphocreatine Shuttle第44-45页
        3.4.4 Integrating the Pyruvate Transporter第45页
    3.5 Time Dependent Concentration Change of Substrates第45页
    3.6 Brief Summary第45-47页
Chapter 4: Modeling of Atrial Electrophysiology第47-55页
    4.1 Introduction第47页
    4.2 Ion Currents Modeling第47-51页
        4.2.1 Modeling the Sodium Current (I_(Na))第48-49页
        4.2.2 Modeling the Calcium Current (I_(Ca))第49页
        4.2.3 Modeling the Potassium Current第49-51页
    4.3 Ion Pump and Current Integration第51-52页
    4.4 Integrating Ion Kinetics and Cardiac Energetics第52-53页
        4.4.1 Total Membrane Potential第52-53页
        4.4.2 Description of Cardiac Bioenergetics第53页
    4.5 Brief Summary第53-55页
Chapter 5: Model Simulation and Results第55-72页
    5.1 Introduction第55页
    5.2 Implementation Decisions第55-57页
    5.3 System flowchart第57-58页
    5.4 Simulation Results and Discussion第58-69页
        5.4.1 Steady State of Glycolytic and TCA Cycle Substrates第58-60页
        5.4.2 Steady State Cardiac Energy Dynamics第60-63页
        5.4.3 Modulated Cardiac Workload and Substrates Response第63-67页
        5.4.4 Atrial MCU Calcium Uptake第67-69页
    5.5 Model Validity and Difference from other In-Silico Cardiac Metabolic Models第69-70页
    5.6 Challenges Encountered and Steps to Resolution第70-72页
Conclusion第72-74页
Reference第74-81页
Published Papers第81-83页
Acknowledgement第83-84页
Appendix Ⅰ: Ordinary Differential Equations第84-85页

论文共85页,点击 下载论文
上一篇:甲状腺激素与心力衰竭关系的研究现状及进展
下一篇:中性粒细胞/淋巴细胞比值与原发性高血压患者靶器官损害的相关性研究