首页--工业技术论文--电工技术论文--输配电工程、电力网及电力系统论文--理论与分析论文--电力系统规划论文

Improving the Accuracy of Short-term Forecasting of Electrical Loads Taking into Account Meteorological Factors Based on Support Vectors Method

Abstract第4页
摘要第5-9页
1. Review and analysis of modern methods and mathematical models to predict electricity consumption第9-16页
    1.1 Classification of short-term load forecasting methods第9页
    1.2 Statistical methods of forecasting第9-10页
        1.2.1 Methods for regression第9页
        1.2.2 Time series methods第9-10页
        1.2.3 Methods based on wavelet transform of time series第10页
    1.3 Methods of artificial intelligence第10-11页
        1.3.1 Methods based on neural network models第10页
        1.3.2 Methods based on fuzzy logic第10页
        1.3.3 Support vector method第10-11页
    1.4 Evolutionary algorithms第11-12页
    1.5 Requirements for short-term forecasting of electricity consumption第12页
    1.6 Main problems of short-term forecasting of electricity consumption第12-13页
        1.6.1 Accuracy of the input - output relationship hypothesis第12-13页
        1.6.2 Prediction of abnormal days第13页
        1.6.3 Inaccurate weather forecast data第13页
    1.7 Review of current literature on the problem of short-term power consumption forecasting第13-15页
        1.7.1 Models of neural networks第13-14页
        1.7.2 Models of neuro-fuzzy networks第14页
        1.7.3 Model of wavelet transform第14-15页
        1.7.4 Regression models第15页
    1.8 Conclusions第15-16页
2. Time series analysis of electricity consumption and its determinants第16-28页
    2.1 Characteristics of the electrical load diagrams of the power system第16-17页
    2.2 Time series of power consumption and influencing factors第17-21页
    2.3 Seasonal and meteorological factors affecting power consumption第21-22页
    2.4 Temperature and light: the analysis of their impact on power consumption in the control room operating area第22-23页
    2.5 Random disturbances第23-27页
    2.6 Conclusions第27-28页
3. Modelling short term future energy consumption based on neural networks and evolutionary algorithms第28-45页
    3.1 Short-term load forecasting using artificial neural network第28-30页
    3.2 Short-term load forecasting using artificial neural networks and particle swarm optimization algorithm第30页
    3.3 Short-term load forecasting using artificial neural networks and particle swarm optimization algorithm第30-40页
        3.3.1 Data analysis and pre-processing第32页
        3.3.2 The number of layers, neurons and transfer functions第32页
        3.3.3 Training of built neural networks第32页
        3.3.4 Architecture of the ANN for the operating zone第32-34页
        3.3.5 The choice of input variables第34页
        3.3.6 Building the structure of neural network第34-35页
        3.3.7 Selection of data for training, testing and validation第35-37页
        3.3.8 Simulation results第37-40页
    3.4 Training the ANN on the basis of self-organization第40-44页
        3.4.1 Dataset for the study第40-41页
        3.4.2 Training of self-organizing maps第41-42页
        3.4.3 The results of clustering and prediction第42-43页
        3.4.4 Performance criteria第43页
        3.4.5 Simulation results第43-44页
    3.5 Conclusions第44-45页
4. Models of future energy consumption based on neural fuzzy network and support vector method第45-61页
    4.1 Predicting power consumption using adaptive neural fuzzy network第45-49页
        4.1.1 The architecture of neuro-fuzzy model第45-46页
        4.1.2 Hybrid algorithm for training neural networks第46-47页
        4.1.3 Simulation result第47-49页
    4.2 Energy consumption forecasting using support vector第49-54页
        4.2.1 Simulation results第51-54页
    4.3 Forecasting of power consumption based on the support vector method and particle swarm algorithm第54-60页
        4.3.1 Load forecasting steps and processes第54-55页
        4.3.2 A set of analysis parameters第55-56页
        4.3.3 Simulation results第56-60页
    4.4 Conclusions第60-61页
Summarize第61-62页
Acknowledgement第62-63页
References第63-67页
Research achievement during working for the degree第67页

论文共67页,点击 下载论文
上一篇:钠离子电池电极材料Na0.9Ni0.45Ti0.55O2和Na0.68Ni0.34Ti0.66O2的制备及电化学性能研究
下一篇:以PTAA为空穴传输层的倒置平面钙钛矿太阳能电池研究