首页--工业技术论文--一般工业技术论文--工程材料学论文--复合材料论文

基于运动张量的柔性多体系统动力学建模方法和三维梁板壳理论

摘要第5-6页
Abstract第6页
Chapter 1 Introduction第12-32页
    1.1 Motivation第12-19页
        1.1.1 Motion based formulation of flexible multibody dynamic第16-18页
        1.1.2 Dimensional reduction第18-19页
    1.2 Literature review第19-29页
        1.2.1 Motion based formulation of flexible multibody dynamics第19-24页
        1.2.2 Dimensional reduction第24-29页
    1.3 Outline of the present work第29-32页
        1.3.1 Formulation based on motion第29-30页
        1.3.2 Dimensional reduction第30-32页
Part I Motion based formulations of flexible multibody dynamics第32-123页
    Chapter 2 Analysis of motion第33-47页
        2.1 Rigid-body motion and Lie group SE(3)第33-35页
        2.2 The canonical form of motion第35-37页
        2.3 Motion field第37-44页
            2.3.1 The generalized vector product tensor第37-39页
            2.3.2 Velocity of a rigid body第39-40页
            2.3.3 Virtual motion第40-41页
            2.3.4 Motion on a curve第41-43页
            2.3.5 Motion on a surface第43-44页
        2.4 Compatibility equation第44-47页
    Chapter 3 The lower pair joints第47-61页
        3.1 Kinematics of a typical lower joint第47-50页
        3.2 Constraints for the lower pair joints第50-56页
            3.2.1 Revolute joints第51-52页
            3.2.2 Prismatic joints第52-54页
            3.2.3 Cylindrical joints第54页
            3.2.4 Screw joints第54-55页
            3.2.5 Planar joints第55页
            3.2.6 Spherical joints第55-56页
        3.3 Generic constraints for lower pair joints第56-61页
            3.3.1 First constraint: vanishing relative rotation第56-57页
            3.3.2 Second constraint: vanishing relative displacement第57-58页
            3.3.3 Third constraint: definition of relative rotation第58-59页
            3.3.4 Fourth constraint: definition of relative displacement第59-61页
    Chapter 4 Formulation of flexible joints第61-80页
        4.1 Flexible joint configuration第61-64页
            4.1.1 Kinematics of the flexible joint第61-63页
            4.1.2 Applied loading第63-64页
        4.2 Deformation measures第64-68页
            4.2.1 Differential work第64-66页
            4.2.2 The deformation measures第66-67页
            4.2.3 Explicit expression of the deformation measures第67-68页
        4.3 Formulation of flexible joints第68-71页
            4.3.1 Elastic forces in the flexible joint第69-70页
            4.3.2 Stiffness matrix of the flexible joint第70-71页
        4.4 Numerical results第71-80页
            4.4.1 Change of reference point第71-73页
            4.4.2 Choice of λ and μ第73-80页
    Chapter 5 Formulation of beam equations第80-93页
        5.1 Formulation of beam equations第80-88页
            5.1.1 Kinematics of the problem第80-83页
            5.1.2 Governing equations第83-85页
            5.1.3 Extension to dynamic problems第85-87页
            5.1.4 Effect of extension-twist coupling第87-88页
        5.2 Finite element implementation第88-93页
            5.2.1 Inertial forces第88-90页
            5.2.2 Elastic forces第90-91页
            5.2.3 Finite element formulation of beams第91-93页
    Chapter 6 Interpolation of rotation and motion第93-123页
        6.1 Interpolation of displacement fields第93-96页
        6.2 Interpolation of rotation fields第96-107页
            6.2.1 Interpolation of the rotation tensor第96-100页
            6.2.2 Interpolation of Euler parameters第100-102页
            6.2.3 Interpolation of rotation parameter vectors第102-104页
            6.2.4 Interpolation of relative rotations第104-105页
            6.2.5 Interpolation of rotation: numerical results第105-107页
        6.3 Interpolation of motion fields第107-119页
            6.3.1 Interpolation of the motion tensor第108-111页
            6.3.2 Interpolation Euler motion parameters第111-114页
            6.3.3 Interpolation of motion parameter vectors第114-116页
            6.3.4 Interpolation of relative motion parameter vectors第116-117页
            6.3.5 Interpolation of motion: numerical results第117-119页
        6.4 Discussion第119-123页
            6.4.1 Computational cost of the algorithms第120页
            6.4.2 Vectorial parameterization of rotation (motion)第120-121页
            6.4.3 Convergence rate第121-123页
Part Ⅱ Dimensional Reduction Techniques第123-218页
    Chapter 7 Three-dimensional beam formulation第124-162页
        7.1 Kinematics of the problem第124-132页
            7.1.1 The reference configuration第126-127页
            7.1.2 The rigid-section motion第127-128页
            7.1.3 The deformed configuration第128-129页
            7.1.4 The strain components第129-131页
            7.1.5 Semi-discretization of the warping field第131-132页
        7.2 Governing equations第132-136页
            7.2.1 Strain energy expression第132-134页
            7.2.2 Rigid-body motions第134-135页
            7.2.3 Stress resultants第135页
            7.2.4 Characteristics of the governing equations第135-136页
        7.3 Reduction of the Hamiltonian matrix第136-142页
            7.3.1 Extremity solutions第137页
            7.3.2 Central solutions第137-141页
            7.3.3 Complete solution第141-142页
        7.4 Three-dimensional beam solutions第142-146页
            7.4.1 Extremity solutions第142页
            7.4.2 Central solution第142-146页
        7.5 Numerical results第146-162页
            7.5.1 Thin-walled C-section beam第146-149页
            7.5.2 Rectangular box section第149-150页
            7.5.3 Curved beams第150-152页
            7.5.4 Incomplete ring problem第152-153页
            7.5.5 Compliance matrix of curved and twisted beams第153-154页
            7.5.6 Helicoidal beam problem第154-159页
            7.5.7 Cantilevered beam with a 45-degree bend第159-162页
    Chapter 8 Three-dimensional plate formulation第162-189页
        8.1 Kinematics of the problem第162-171页
            8.1.1 Position and base vectors in the reference configuration第164页
            8.1.2 Position and base vectors in the deformed configuration第164-165页
            8.1.3 Strain components第165-166页
            8.1.4 Semi-discretization第166-167页
            8.1.5 Rigid-body motions第167-168页
            8.1.6 Nodal forces第168-170页
            8.1.7 Stress resultants第170-171页
        8.2 Governing equations第171-175页
            8.2.1 The strain energy density第171-172页
            8.2.2 The virtual work done by the externally applied loads第172-173页
            8.2.3 Equilibrium equations第173页
            8.2.4 Global constitutive laws第173-174页
            8.2.5 Governing equations第174-175页
        8.3 Dimensional reduction第175-181页
            8.3.1 Power series expansion第176页
            8.3.2 Global equilibrium equations第176-178页
            8.3.3 The series solution第178-179页
            8.3.4 Global compliance matrix第179-180页
            8.3.5 Invariance of the solution第180-181页
        8.4 Stress recovery第181-182页
        8.5 Numerical results第182-189页
            8.5.1 Cylindrical bending problem第182-184页
            8.5.2 Spatial bending problem第184-189页
    Chapter 9 Three-dimensional shell formulation第189-210页
        9.1 Kinematics of the problem第189-195页
            9.1.1 The reference configuration第191页
            9.1.2 The deformed configuration第191-193页
            9.1.3 Strain components第193-194页
            9.1.4 Semi-discretization of the displacement field第194-195页
        9.2 Governing equations第195-199页
            9.2.1 Strain energy expression第195-196页
            9.2.2 Stress resultants第196-197页
            9.2.3 External virtual work第197页
            9.2.4 Governing equations第197-199页
        9.3 Dimensional reduction第199-201页
            9.3.1 Particular solution第199-200页
            9.3.2 Compliance matrix第200-201页
            9.3.3 Discussion第201页
        9.4 Stress recovery第201-202页
        9.5 Numerical results第202-210页
            9.5.1 Cylindrical bending problem第202-206页
            9.5.2 Spatial bending problem第206-210页
    Chapter 10 Conclusions and future work第210-218页
        10.1 Conclusions第210-214页
            10.1.1 Motion based formulation of flexible multibody dynamics第210-212页
            10.1.2 Dimensional reduction techniques第212-214页
        10.2 Main contributions第214-215页
        10.3 Future work第215-218页
            10.3.1 Beam problem第215-217页
            10.3.2 Plate and shell problem第217-218页
Appendices第218-243页
    Appendix A Formulation of flexible joint第218-222页
        A.1 Linearization of functions λ and μ第218-219页
        A.2 Variations of the strain measures第219-220页
        A.3 Linearization of the tangent tensor第220-222页
    Appendix B Interpolation of rotation and motion第222-225页
        B.1 Notational conventions第222-223页
        B.2 Polar decomposition theorem第223-225页
    Appendix C Three-dimensional beam第225-231页
        C.1 Hamiltonian matrices第225-226页
        C.2 Eigenvalues of Hamiltonian matrices第226-227页
        C.3 Symplectic matrices第227-228页
        C.4 Exponential of the Hamiltonian matrix第228-231页
    Appendix D Three-dimensional plate第231-237页
        D.1 Boolean matrices第231-233页
        D.2 Solution of the recursive system第233-234页
        D.3 Stress resultants第234-235页
        D.4 Linear relationship between dependent and independent coefficients of stress resultants第235-237页
    Appendix E Three-dimensional shell第237-243页
        E.1 Definition of matrices第237-241页
        E.2 Stress resultants第241-243页
Acknowledgements第243-244页
Bibliography第244-251页

论文共251页,点击 下载论文
上一篇:重商主义为什么没有兴起在中国?--中西方重商主义思想比较分析
下一篇:基于复杂网络理论的心电时间序列自回归模型研究