一种基于子空间的增量学习人脸识别方法
摘要 | 第1-5页 |
Abstract | 第5-7页 |
目录 | 第7-9页 |
表格 | 第9-10页 |
插图 | 第10-11页 |
第一章 绪论 | 第11-17页 |
·引言 | 第11-12页 |
·人脸识别中的主要挑战 | 第12-14页 |
·人脸图片的多样性 | 第12-13页 |
·小样本问题 | 第13-14页 |
·单训练样本的人脸识别 | 第14-16页 |
·本文的组织结构 | 第16-17页 |
第二章 相关工作 | 第17-22页 |
·早期人脸识别算法 | 第17-18页 |
·单样本人脸识别算法 | 第18-19页 |
·增量学习技术在人脸识别中的应用 | 第19-20页 |
·本文提出算法的目的及其优越性 | 第20-22页 |
第三章 子空间的生成 | 第22-26页 |
·对训练样本集的扩充 | 第22-24页 |
·对图片的预处理 | 第22-23页 |
·平移图片的生成 | 第23-24页 |
·子空间的构建 | 第24-25页 |
·增量学习中子空间构建的特点 | 第25-26页 |
第四章 子空间相似度 | 第26-32页 |
·主角度 | 第26-29页 |
·主角度的定义 | 第26-27页 |
·主角度与矩阵奇异值 | 第27-29页 |
·现有的子空间相似度衡量方法 | 第29-30页 |
·本文提出的子空间相似度衡量方法 | 第30-32页 |
第五章 子空间的更新与调整 | 第32-37页 |
·增量学习 | 第32-33页 |
·向量的调整 | 第33页 |
·子空间的更新 | 第33-37页 |
第六章 具有增量学习功能的人脸识别算法 | 第37-45页 |
·算法过程 | 第37-41页 |
·预处理阶段算法 | 第38页 |
·训练阶段算法 | 第38-39页 |
·识别和增量学习阶段 | 第39-41页 |
·阂值系统的设定 | 第41-43页 |
·学习率参数的设定 | 第43-45页 |
第七章 实验 | 第45-55页 |
·数据库描述 | 第45-46页 |
·AR数据库 | 第45-46页 |
·EYALE数据库 | 第46页 |
·实验基本设定 | 第46-47页 |
·实验一 | 第47-49页 |
·实验二 | 第49-52页 |
·生成子空间维数的影响 | 第49-51页 |
·学习率参数设定策略的影响 | 第51-52页 |
·实验三 | 第52-55页 |
·在AR数据库的识别表现的比较 | 第52-53页 |
·在EYALE数据库的识别表现的比较 | 第53-55页 |
第八章 总结与展望 | 第55-57页 |
参考文献 | 第57-63页 |
致谢 | 第63-64页 |