首页--工业技术论文--化学工业论文--一般性问题论文--化工机械与仪器、设备论文--化工过程用机械与设备论文--流体力学过程用机械与设备论文

EMMS Based Coarse-graining DDPM and Its Application to Circulating Fluidized Bed Simulation

摘要第5-8页
Abstract第8-10页
CHAPTER 1 INTRODUCTION第14-24页
    1.1 BACKGROUND第14-22页
    1.2 SCOPE/OBJECTIVES OF THIS STUDY第22-24页
CHAPTER 2 GOVERNING EQUATIONS AND MODEL RESOLUTIONPARAMETERS OF DDPM第24-38页
    2.1 BACKGROUND第24页
    2.2 GOVERNING EQUATIONS第24-30页
        2.2.1 Gas phase第24页
        2.2.2 Solid phase第24-26页
        2.2.3 Constitutive laws第26-29页
        2.2.4 Particle-wall boundary conditions第29-30页
    2.3 MODEL RESOLUTION PARAMETERS第30-36页
        2.3.1 Grid size第30-31页
        2.3.2 Particle number per parcels第31-32页
        2.3.3 Drag force第32-36页
    2.4 CONCLUSION第36-38页
CHAPTER 3 VALIDATION OF DDPM-EMMS APPROACH FOR 2D CFB RISERSIMULATIONS第38-60页
    3.1 BACKGROUND第38页
    3.2 NUMERICAL MODELING第38-46页
        3.2.1 Model selection第38页
        3.2.2 Geometry and mesh第38-39页
        3.2.3 Material properties第39-40页
        3.2.4 Boundary and initial conditions第40-42页
        3.2.5 Solver setting第42-43页
        3.2.6 Drag force correction第43-46页
    3.3 RESULTS AND DISCUSSION第46-58页
        3.3.1 Horio riser simulations第46-54页
        3.3.2 ETH riser simulations第54-58页
    3.4 CONCLUSIONS第58-60页
CHAPTER 4 HYDRODYNAMICS MODELING OF 3D SEMI-INDUSTRIALSCALE CFB RISER第60-84页
    4.1 BACKGROUND第60-61页
    4.2 EXPERIMENTAL SETUP第61-62页
    4.3 NUMERICAL MODELING第62-69页
        4.3.1 Model selection第62-64页
        4.3.2 Geometry and mesh第64-65页
        4.3.3 Boundary and initial conditions第65-66页
        4.3.4 Solution scheme第66-67页
        4.3.5 Drag force correction第67-69页
    4.4 RESULTS AND DISCUSSION第69-82页
        4.4.1 Hydrodynamics of 3D riser-DDPM modeling approach第69-77页
        4.4.2 Comparison of DDPM and TFM modeling approaches第77-82页
    4.5 CONCLUSIONS第82-84页
CHAPTER 5 HYDRODYNAMICS MODELING OF FULL-LOOP SEMI-INDUSTRIAL SCALE CFB REACTOR第84-114页
    5.1 BACKGROUND第84-86页
    5.2 NUMERICAL MODELING第86-90页
        5.2.1 Model selection第86-87页
        5.2.2 Material properties第87-88页
        5.2.3 Geometry and mesh第88页
        5.2.4 Boundary and operating conditions第88-89页
        5.2.5 Solution scheme第89-90页
    5.3 RESULTS AND DISCUSSION第90-112页
        5.3.1 Effect of model resolution parameters on hydrodynamics of full-loop第90-106页
        5.3.2 Particle size distribution第106-112页
    5.4 CONCLUSIONS第112-114页
CHAPTER 6 COMBUSTION MODELING OF 150 MW INDUSTRIAL SCALECFB BOILER第114-140页
    6.1 BACKGROUND第114-117页
    6.2 NUMERICAL MODELING第117-126页
        6.2.1 Model selection第117-122页
        6.2.2 Geometry and Mesh第122-124页
        6.2.3 Material properties第124页
        6.2.4 Boundary and initial conditions第124-125页
        6.2.5 Solution scheme第125页
        6.2.6 Drag force第125-126页
    6.3 RESULTS AND DISCUSSION第126-138页
        6.3.1 Hydrodynamics第126-132页
        6.3.2 Combustion第132-138页
    6.4 CONCLUSION第138-140页
CHAPTER 7 CONCLUSIONS AND PROSPECTS第140-144页
    7.1 CONCLUSIONS第140-141页
    7.2 FUTURE PROSPECTS第141-144页
LIST OF ABBREVIATIONS第144-148页
REFERENCES第148-161页
CURRICULUM VITAE第161-163页
ACKNOWLEDGEMENT第163页

论文共163页,点击 下载论文
上一篇:多孔Pb(Zr0.95Ti0.05)O3铁电陶瓷的力学性能及失效行为研究
下一篇:基于反应-扩散的银颗粒形貌的可控制备及其催化性能研究