首页--数理科学和化学论文--分子物理学、原子物理学论文--原子物理学论文

超冷原子的产生与操控

摘要第5-6页
Abstract第6页
CHAPTER 1 Introduction第16-24页
    1.1 Fermionic Degeneracy-a success story第17-18页
    1.2 Why study Lithium?第18-20页
    1.3 Motivation & Outline for the Current Work第20-24页
CHAPTER 2 Expansion of Fermionic superfluid across the BEC-BCS crossover第24-49页
    2.1 Degenerate quantum gases in the BEC-BCS crossover第25-27页
    2.2 Degenerate Bose gases第27-30页
        2.2.1 Ideal, noninteracting Bose gas第27-28页
        2.2.2 Interacting BEC第28-29页
        2.2.3 Thomas-Fermi limit第29-30页
    2.3 Degenerate Fermi gases第30-32页
        2.3.1 Ideal Fermi gas第30-31页
        2.3.2 Interacting Fermi gas and BCS theory第31-32页
    2.4 BEC-BCS crossover第32-34页
    2.5 Interactions in 6Li and Feshbach resonance第34-37页
    2.6 Free Expansion of Atomic Gases第37-42页
        2.6.1 Expansion of non-degenerate gases第37-38页
        2.6.2 Expansion of Superfluid Gases第38-39页
        2.6.3 Equation of state第39-40页
        2.6.4 Scaling approach第40-42页
        2.6.5 Harmonic potentials第42页
    2.7 Expansion out of a cylindrically symmetric trap第42-44页
    2.8 Atomic expansion into a saddle potential第44-46页
        2.8.1 Ballistic expansion into a saddle potential第44-46页
        2.8.2 Hydrodynamic expansion into a saddle potential第46页
    2.9 Surface mode variation in cloud expansion第46-49页
CHAPTER 3 Experimental setup & methods第49-82页
    3.1 Two-species apparatus for cooling of ~6Li第49-51页
        3.1.1 Why two species?第49-50页
        3.1.2 Why a Boson and a Fermion?第50-51页
        3.1.3 Why ~(41)K and ~6Li?第51页
    3.2 Vacuum system and atomic beam第51-52页
    3.3 Setting up the Lasers第52-57页
    3.4 Cooling and trapping strategy第57-73页
        3.4.1 Spin-flip Zeeman slower for ~6Li第57-59页
        3.4.2 Advanced 2D+ MOT for ~(41)K第59-61页
        3.4.3 ~6Li-~(41)K dual-species 3D-MOT第61-63页
        3.4.4 ~(41)K D1 line gray molasses and ~6Li UV MOT第63-66页
        3.4.5 Optical pumping and magnetic transport第66-70页
        3.4.6 Evaporation and sympathetic cooling of ~6Li in the plugged trap第70-71页
        3.4.7 Cooling in the dipole trap第71-73页
    3.5 Absorption imaging第73-75页
        3.5.1 Imaging optical setup第74-75页
    3.6 Experimental strategy in a nutshell第75-76页
    3.7 Results & Discussion第76-82页
        3.7.1 Oscillatory expansion at unitarity第76-78页
        3.7.2 Oscillatory expansion at BEC-BCS crossover第78-79页
        3.7.3 Quantitative analysis第79-82页
CHAPTER 4 Modulation Transfer Spectroscopy (MTS) of ~6Li atomic vapors第82-116页
    4.1 Theoretical background of frequency modulation transfer spectroscopy第83-91页
        4.1.1 Natural linewidth第84-85页
        4.1.2 Doppler broadening第85-86页
        4.1.3 Saturation spectroscopy第86-88页
        4.1.4 Frequency modulation spectroscopy第88-91页
    4.2 Frequency modulation transfer spectroscopy第91-94页
    4.3 FOUR-WAVE MIXING (FWM)第94-96页
    4.4 Modulation transfer spectroscopy for ~6Li第96-100页
        4.4.1 Spectroscopy cell Design & Preparation第96-98页
        4.4.2 Experimental realization:optical setup for frequency modulation transferspectroscopy第98-100页
    4.5 Experimental results and discussion第100-111页
        4.5.1 Intensity of the probe beam第100-102页
        4.5.2 Frequency response of EOM第102-103页
        4.5.3 Different polarization combinations第103-105页
        4.5.4 Effect of Magnetic field on the MTS signal第105-111页
    4.6 Locking performance of MTS第111-112页
    4.7 Comparison of Modulation transfer spectroscopy with FM spectroscopy第112-116页
CHAPTER 5 Nonlinear wave dynamics in a double well potential第116-146页
    5.1 Josephson Effect in Bose-Einstein condensates第117-118页
    5.2 Experimental realization of an external BJJ第118-120页
    5.3 Two-mode approximations analogy with classical pendulum第120-121页
    5.4 Dynamical properties of the bosonic Josephson junction under the influence of harmonically trapped BEC第121-130页
        5.4.1 Meanfield description for BECs:the Gross-Pitaevskii equation第122-123页
        5.4.2 Coupled Gross-Pitaevskii Equations第123-127页
        5.4.3 Two -Mode description of coupled GP equation第127-130页
    5.5 Numerical techniques第130-134页
        5.5.1 Split-step Fourier method第130-132页
        5.5.2 Ground state: imaginary time propagation第132页
        5.5.3 4~(th) order Runge-Kutta Method第132-134页
    5.6 Results & Discussion第134-146页
        5.6.1 Zero Mode第134-137页
        5.6.2 Pi-Mode第137-139页
        5.6.3 Phase Diagram第139-140页
        5.6.4 Phase-portrait第140-142页
        5.6.5 Oscillation frequency response第142-144页
        5.6.6 Comparison of two-mode approximation and coupled GPEs第144-146页
CONCLUSION第146-148页
Bibliography第148-155页
Acknowledgement第155-157页
List of publication第157页

论文共157页,点击 下载论文
上一篇:星载量子纠缠源关键技术与发展应用
下一篇:相对论性保结构粒子算法在等离子体多尺度过程中的应用