首页--工业技术论文--化学工业论文--试剂与纯化学品的生产论文--离子交换剂论文--合成离子交换剂论文--有机离子交换剂论文

Structure Nature and Ion Transport in Ion Exchange Membrane

Acknowledgements第4-6页
中文摘要第6-7页
ABSTRACT第7-8页
Chapter 1: General Introduction-Ion Exchange Membrane and Applications第21-50页
    1.1 Introduction第21-22页
    1.2 Application and integrated systems第22-28页
        1.2.1 Polymer electrolyte membrane fuel cell (PEMFC)第24-26页
        1.2.2 Diffusion Dialysis第26-28页
    1.3 Fundamental concepts第28-29页
    1.4 Design and Preparation of IEMs第29-33页
        1.4.1 Desired characteristics第29-30页
        1.4.2 Polymeric Membranes第30-31页
        1.4.3 Mixed Matrices第31-33页
    1.5 Structure morphology第33-35页
        1.5.1 Dense membranes第33-34页
        1.5.2 Layered membranes第34-35页
        1.5.3 Porous membranes第35页
    1.6 Ion transport and structure property relationship第35-39页
        1.6.1 Structure and Proton Transport第35-37页
        1.6.2 Structure and Anion transport第37-39页
        1.6.3 Ion transport for acid recovery via diffusion dialysis第39页
    1.7 Development of Ion Exchange Membrane第39-48页
        1.7.1 Proton Exchange Membranes for fuel cell第39-44页
        1.7.2 Anion Exchange Membranes for fuel cell第44-48页
    1.8 Scope and outline of the thesis第48-50页
Chapter 2: Sandwich Structure SPPO/BPPO Proton Exchange Membranes for Fuel Cells:Morphology- electrochemical properties relationship第50-76页
    2.1 Introduction第50-53页
    2.2 Experimental section第53-56页
        2.2.1 Materials第53页
        2.2.2 Preparation of sandwich structured membranes第53-54页
        2.2.3 Characterization第54-56页
    2.3 Results and Discussions第56-75页
        2.3.1 Formation of sandwich structure Membrane第56-59页
        2.3.2 Morphology第59-62页
        2.3.3 Thermal Behavior第62-64页
        2.3.4 Electrochemical properties relationship第64-67页
        2.3.5 Proton conductivity第67-70页
        2.3.6 Methanol permeability第70-72页
        2.3.7 Fuel cell performance evaluation第72-75页
    2.4 Conclusion第75-76页
Chapter 3: Constructing Low Barrier Proton Conduction Pathways in Polymer ElectrolyteMembranes for Fuel Cells第76-97页
    3.1 Introduction第76-79页
    3.2 Experimental section第79-83页
        3.2.1 Materials第79页
        3.2.2 Synthesis of toluenesulfonylguanyl azide (TSGA)第79-80页
        3.2.3 Synthesis of Toluenesulfonamide, N-1H-tetrazol-5-yl-(SAT)第80-81页
        3.2.4 Synthesis of sulfonyl-amino-tetrazole polymer第81页
        3.2.5 Preparation of SP-SAT membranes第81页
        3.2.6 Characterization第81-83页
        3.2.7 Pulse Field Gradient NMR spectroscopy第83页
        3.2.8 Cyclic Voltammograms in Anhydrous electrolyte systems第83页
    3.3 Results and Discussions第83-96页
        3.3.1 Chemical composition,morphology, and mechanical properties第83-90页
        3.3.2 Proton conductivity第90-95页
        3.3.3 Electrochemical stability of sulfonyl-amino-tetrazole第95-96页
    3.4 Conclusion第96-97页
Chapter 4: Highly Charged Hierarchically Structured Porous Anion Exchange Membranes withExcellent Performance第97-125页
    4.1 Introduction第97-100页
    4.2 Experimental section第100-105页
        4.2.1 Materials第100-101页
        4.2.2 Synthesis of quaternized poly(2-dimethylaminoethanol-N-2,3-dimethylphenyloxide) (QDAPPO)第101页
        4.2.3 Synthesis of 3-methyl-1-(3-(triethoxysilyl)propyl)-1H-imidazolium chloride (Ionliquid, IL)第101页
        4.2.4 Membrane preparation第101-103页
        4.2.5 Polymer and Membrane characterization第103-105页
    4.3 Results and Discussions第105-119页
        4.3.1 Synthesis and characterization of QDA-IL AEMs第105-107页
        4.3.2 Membrane Morphology第107-109页
        4.3.3 Ion Exchange Capacity第109-110页
        4.3.4 Water Uptake (WU)第110-111页
        4.3.5 Diffusion dialysis performance第111-116页
        4.3.6 Thermal stability第116-117页
        4.3.7 Mechanical properties第117-119页
    4.4 Conclusion第119-120页
    4.5 Supporting Information第120-125页
Chapter 5: Hierarchically Structured Porous Anion Exchange Membranes ContainingZwetterionic Pores for Ion Separation第125-150页
    5.1 Introduction第125-128页
    5.2 Experimental section第128-130页
        5.2.1 Materials第128页
        5.2.2 Membrane preparation第128-130页
    5.3 Results and Discussions第130-148页
        5.3.1 Membrane composition and morphology第130-133页
        5.3.2 Water Uptake (WU)and Ion Exchange Capacity(IEC)第133-136页
        5.3.3 Mechanical Properties第136-139页
        5.3.4 Thermal Stability第139-140页
        5.3.5 Diffusion Dialysis Performance第140-148页
    5.4 Conclusion第148-150页
Chapter 6: Design of Mixed Matrix Anion Exchange Membrane for fuel cell第150-176页
    6.1 Introduction第150-153页
    6.2 Experimental Section第153-158页
        6.2.1 Materials第153页
        6.2.2 Synthesis of quarnized poly(2-dimethylaminohexanol-N-2,3-dimethylphenyloxide) (QDAH-PPO)第153-154页
        6.2.3 Hybrid Membrane preparation (QDAH-xQSi-PPOy)第154-155页
        6.2.4 Characterization第155-158页
    6.3 Results and Discussion第158-175页
        6.3.1 Preparation and characterization of QDAH-QSi-PPO membranes第158-161页
        6.3.2 Microstructure morphology第161-165页
        6.3.3 Mechanical properties第165-166页
        6.3.4 Thermal stability第166-167页
        6.3.5 Ion Exchange Capacity第167-168页
        6.3.6 Water Uptake (WU)and Swelling Ratio(SR)第168-171页
        6.3.7 The hydroxide ion conductivity第171-173页
        6.3.8 Alkaline stability第173-175页
    6.4 Conclusion第175-176页
Chapter 7: Tetrazole Tethered Polymers for Stable Alkaline Anion Exchange Membranes第176-194页
    7.1 Introduction第176-179页
    7.2 Experimental section第179-183页
        7.2.1 Materials第179页
        7.2.2 Synthesis of 2-(5-(benzylthio)-1H-tetrazol-1-yl)-N,N-dimethylethanamine(BTTDMEA)第179-180页
        7.2.3 Bromination of poly (2,6-dimethyl-1,4-phenylene oxide) (BPPO)第180页
        7.2.4 Synthesis of tetrazole tethered Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) withquaternary ammonium groups (t-QBTTPPO)第180-181页
        7.2.5 Synthesis of quaternized Poly(2,6-dimethyl-1,4-phenylene oxide) (QPPO)第181页
        7.2.6 Anion exchange membrane preparation第181页
        7.2.7 Characterization第181-183页
    7.3 Results and Discussions第183-193页
        7.3.1 Chemical structure and composition第183-187页
        7.3.2 Morphology structure第187-188页
        7.3.3 Hydroxide conductivity第188-190页
        7.3.4 Alkaline stability第190-193页
    7.4 Conclusion第193-194页
Chapter 8: Tetrazole End-capped Polymers for Anion Exchange Membranes第194-216页
    8.1 Introduction第194-196页
    8.2 Experimental section第196-201页
        8.2.1 Materials第196页
        8.2.2 Synthesis of N,N-dimethyl-3-((1-methyl-1H-tetrazol-5-yl)thio)propan-1-amine(DMTPA)第196-197页
        8.2.3 Synthesis of 5-((6-bromohexyl)thio)-1-methyl-1H-tetrazole (BHTMT)第197页
        8.2.4 Synthesis of 6-(dimethylamino)-N,N-dimethyl-N-(6-((1-methyl-1H-tetrazol-5-yl)thio)hexyl)hexan-1-aminium bromide (DMA-QBHTMT)第197-198页
        8.2.5 Polymer synthesis第198页
        8.2.6 Membrane preparation第198-199页
        8.2.7 Characterization第199-201页
    8.3 Results and Discussions第201-215页
        8.3.1 Polymer synthesis and membrane preparation第201-206页
        8.3.2 Morphology第206-208页
        8.3.3 Ion Exchange Capacity, Water Uptake and Swelling ratio第208-211页
        8.3.4 Hydroxide Ion Conductivity第211-212页
        8.3.5 Thermal stability第212-214页
        8.3.6 Mechanical properties第214-215页
    8.4 Conclusion第215-216页
CHAPTER 9: Summary and Recommendations for Future Research第216-222页
References第222-237页
Publications第237页

论文共237页,点击 下载论文
上一篇:Development of BPPO-Based Anion Exchange Membranes for Electrodialysis and Diffusion Dialysis
下一篇:面向碱性燃料电池的阴离子交换膜结构设计及性能调控