摘要 | 第1-7页 |
ABSTRACT | 第7-9页 |
ACKNOWLEDGMENTS | 第9-10页 |
DEDICATION | 第10-11页 |
TABLE OF CONTENTS | 第11-14页 |
LIST OF TABLES | 第14-15页 |
LIST OF FIGURES | 第15-17页 |
LIST OF ALGORITHMS | 第17-18页 |
Chapter1: INTRODUCTION | 第18-28页 |
·Introduction | 第18-28页 |
·Location recording methods | 第19-20页 |
·Overview of GSM network architecture | 第20-23页 |
·Reality mining dataset and context logging | 第23-25页 |
·Main contribution and organization of thesis | 第25-28页 |
Chapter2: RELATED WORK | 第28-36页 |
·Location information recording | 第28-30页 |
·Location aware applications | 第30-31页 |
·Algorithms and techniques used for mobility prediction | 第31-32页 |
·Proposed framework | 第32-34页 |
·Coordinate extraction through CGI header | 第33页 |
·Spatial outliers detection and retrieval of missing values | 第33页 |
·Cell oscillation removal | 第33页 |
·Extraction of stay points | 第33-34页 |
·User profile building and similarity measurement | 第34页 |
·Published work and contribution | 第34-36页 |
Chapter3: PRECISE LOCATION ACQUISITION oF MOBILITYDATA | 第36-54页 |
·Issues related to mobility data | 第36-38页 |
·Location coordinate retrieval through CGI header | 第36页 |
·Open Cell-ID databases | 第36-37页 |
·Spatial outliers in data | 第37页 |
·Missing values | 第37-38页 |
·Proposed methodology towards the issues | 第38-44页 |
·Use of Google location API's for coordinate retrieval | 第38-39页 |
·Use of semantic tag information | 第39-42页 |
·Use of GSM network information for spatial outliers removal | 第42-44页 |
·Experiments and results | 第44-52页 |
·Importance of semantically tagged locations | 第44-45页 |
·Location coordinate retrieval through Google location API | 第45-47页 |
·Spatial outliers removal | 第47-52页 |
·Chapter conclusion | 第52-54页 |
Chapter4: CELL OSCILLATION RESOLUTION AND EXTRACTIONOF STAY POINTS | 第54-74页 |
·Issues related to cell oscillation phenomena | 第54-58页 |
·GSM Cells handovers | 第54-55页 |
·Overlapping area | 第55-56页 |
·User movement information | 第56-58页 |
·Solutions towards the cell oscillation phenomena and place discovery | 第58-66页 |
·Cell oscillation resolution | 第59-60页 |
·Extraction of stay points | 第60-65页 |
·Mobility habit mining | 第65-66页 |
·Experiments and results | 第66-71页 |
·Time threshold criteria | 第66-67页 |
·Significant place appearance | 第67-68页 |
·User's visit history analysis over days | 第68-69页 |
·User's trajectory analysis over stay points | 第69-70页 |
·Stay point extraction comparison with tagged locations | 第70-71页 |
·Chapter conclusion | 第71-74页 |
Chapter5: MOBILITY PROFILE BUILDING AND USERSIMILARITY MEASURE | 第74-96页 |
·Issues related to mobilily profiling | 第74-77页 |
·Extraction of location information from partial CGI header | 第75-76页 |
·Removal of spatial outliers | 第76页 |
·Missing values retrieval | 第76页 |
·Cell oscillation resolution | 第76-77页 |
·Stay points extraction | 第77页 |
·Pattern extraction | 第77页 |
·Pattern matching and user's similarity measure | 第77页 |
·Proposed methodology for mobility profiling | 第77-87页 |
·Location coordinate extraction,outlier removal and missing values retrieval | 第78页 |
·Cell oscillation resolution and extraction of stay points | 第78-79页 |
·Actual mobility profile building | 第79-87页 |
·Sub-sequence clustering in mobility data | 第82-83页 |
·Time stamping or fingerprinting | 第83-84页 |
·Mobility pattern extraction thorough potential stay points | 第84页 |
·Similarity measurement | 第84-87页 |
·Dataset | 第87页 |
·Experiments and results | 第87-93页 |
·Location coordinate extraction,spatial outlier removal and missing valuesretrieval | 第87-88页 |
·Importance of semantic tags | 第88-89页 |
·Cell oscillation resolution and discovery of stay points | 第89-90页 |
·Discovery of mobility patterns | 第90-91页 |
·User similarity measurement | 第91-93页 |
·Chapter conclusion | 第93-96页 |
CONCLUSION | 第96-100页 |
·Milestones achieved | 第96-97页 |
·Future work directions | 第97-98页 |
·Closing remarks | 第98-100页 |
REFERENCES | 第100-108页 |
LIST OF PUBLICATIONS | 第108页 |