首页--工业技术论文--建筑科学论文--建筑材料论文--一般性问题论文

可持续建筑材料中的生物矿化研究

摘要第5-8页
Abstract第8-12页
Abbreviations第23-24页
Chapter 1: Introduction第24-35页
    1.1 General Introduction第24-27页
    1.2 Ecological wisdom in nature for sustainable building materials第27-29页
    1.3 Microbially induced calcium carbonate precipitation第29-31页
    1.4 Problem and gap in studies第31-33页
    1.5 Research objectives第33-34页
    1.6 Thesis organization第34-35页
Chapter 2: Literature Review第35-57页
    2.1 Microbial activities leading to carbonate precipitation第35-37页
    2.2 MICP process driven by urease enzyme第37-39页
    2.3 Factors affecting the efficiency of MICP第39-40页
    2.4 Urease producing bacterial isolation source第40-41页
    2.5 Polymorphism of carbonate crystals第41-42页
    2.6 Production of MICP: Biocement第42-43页
    2.7 Biocement and properties of building materials第43-45页
    2.8 Applications of MICP in building materials第45-54页
        2.8.1 Biocement in remediation of building materials第46-49页
        2.8.2 Biocement in low energy building materials第49-52页
        2.8.3 MICP in ground improvement第52-54页
    2.9 Summary of literature review and future prospective第54-57页
Chapter 3: Complete bacterial community analysis of Yixing Shanjuan Cave and bio-consolidation of cracks in masonry cement mortars by one of urease producing isolate第57-86页
    3.1 Introduction第57-59页
    3.2 Materials and methods第59-68页
        3.2.1 Sample collection第59-60页
        3.2.2 Bacterial community analysis using Illumina Mi Seq第60-61页
            3.2.2.1 Total DNA extraction and DNA sequence analysis第60-61页
            3.2.2.2 Bioinformatics analysis第61页
        3.2.3 Isolation and characterization analysis第61-65页
            3.2.3.1 Bacterial isolation第61-62页
            3.2.3.2 Identification of best urease producing bacteria第62-63页
            3.2.3.3 Optimization of conditions for urease activity第63-64页
            3.2.3.4 Bacterial growth profile and p H profile第64页
            3.2.3.5 Urease activity第64页
            3.2.3.6 Calcite estimation第64-65页
        3.2.4 Bio-consolidation of cracks in masonry cement mortars第65-68页
            3.2.4.1 Biocement production第65页
            3.2.4.2 Mortar preparation and crack generation第65-66页
            3.2.4.3 Consolidation of cracks第66-67页
            3.2.4.4 Water absorption第67页
            3.2.4.5 Compressive strength第67页
            3.2.4.6 Micro-structural analyses第67-68页
            3.2.4.7 Thermogravimetric and differential scanning calorimetry第68页
    3.3 Results and Discussion第68-84页
        3.3.1 Microbial diversity of Yixing Shanjuan karst cave of China第68-72页
        3.3.2 Isolation and characterization analysis第72-78页
            3.3.2.1 Isolation and identification of best ureolytic isolate第72-73页
            3.3.2.2 Optimization of conditions for urease activity第73-75页
            3.3.2.3 Bacterial growth and p H profiles第75-76页
            3.3.2.4 Urease activity and calcite estimation第76-78页
        3.3.3 Bio-consolidation of cracks in masonry cement mortars第78-84页
            3.3.3.1 Compressive strength第78-79页
            3.3.3.2 Water absorption第79-80页
            3.3.3.3 Micro-structural analyses第80-82页
            3.3.3.4 Thermogravimetric analysis第82-84页
    3.4 Conclusion第84-86页
Chapter 4: Improvement in the performance and properties of cement mortars with secondary cementitious material by biomineralization第86-101页
    4.1 Introduction第86-87页
    4.2 Materials and methods第87-90页
        4.2.1 Sample collection第87页
        4.2.2 Isolation and identification of urease producing bacterium第87-88页
        4.2.3 Materials第88页
        4.2.4 Biocement development第88-89页
        4.2.5 Biomineralization in MK第89页
        4.2.6 Mortar specimens preparation with MK第89页
        4.2.7 Porosity of mortar specimens第89-90页
        4.2.8 Micro-structural analyses第90页
    4.3 Results and discussion第90-99页
        4.3.1 Urease producing bacterium第90页
        4.3.2 Compressive strength第90-92页
        4.3.3 Porosity第92-94页
        4.3.4 SEM-EDS第94-96页
        4.3.5 FTIR第96-98页
        4.3.6 XRD第98-99页
    4.4 Conclusions第99-101页
Chapter 5: Fly ash incorporated with biocement to improve engineering properties of expansive soil第101-113页
    5.1 Introduction第101-102页
    5.2 Materials and Methods第102-104页
        5.2.1 Materials第102-103页
        5.2.2 Biocement production第103页
        5.2.3 Sample preparation第103页
        5.2.4 Atterberg limits第103-104页
        5.2.5 Free swell testing method第104页
        5.2.6 Unconfined Compressive Strength (UCS) test第104页
        5.2.7 Micro-structural analyses第104页
    5.3 Results and Discussion第104-112页
        5.3.1 Atterberg limits第104-105页
        5.3.2 Swelling potential第105-106页
        5.3.3 Unconfined Compressive Strength (UCS)第106-107页
        5.3.4 SEM-EDX第107-110页
        5.3.5 FTIR and XRD第110-112页
    5.4 Conclusions第112-113页
Chapter 6: Bio-grout based on microbially induced sand solidification by means of asparaginase activity第113-126页
    6.1 Introduction第113-114页
    6.2 Materials and Methods第114-117页
        6.2.1 Materials第114-115页
        6.2.2 Asparaginase assay第115页
        6.2.3 Bio-grout preparation第115-116页
        6.2.4 Strength and permeability of Bio-grout第116页
        6.2.5 Micro-structural analyses第116页
        6.2.6 X-ray computed tomography (XCT)第116-117页
        6.2.7 Thermogravimetry analysis (TGA)第117页
    6.3 Results第117-122页
        6.3.1 Asparaginase activity第117-118页
        6.3.2 Mechanical properties第118-119页
        6.3.3 SEM-EDS analysis第119页
        6.3.4 XRD and XCT第119-121页
        6.3.5 Thermogravimetric analysis (TGA)第121-122页
    6.4 Discussion第122-126页
Chapter 7: Conclusion, Innovation and Future Perspectives第126-132页
    7.1 Conclusion第126-129页
    7.2 Innovation第129页
    7.3 Future perspectives第129-132页
References第132-151页
Appendix: Complete genome sequence of carbonic anhydrase producing Psychrobacter sp. SHUES第151-154页
致谢第154-155页
攻读博士学位期间发表的论文第155-156页

论文共156页,点击 下载论文
上一篇:硬质石材框架式锯机单行程锯解机理及其可锯解加工性研究
下一篇:石墨—碳膜—盐复合吸附剂的吸附特性及其在储能中的应用