首页--经济论文--工业经济论文--世界工业经济论文--工业部门经济论文--金属加工、机械工业论文--交通运输机械工业论文

汽车进口关税异常检测--马拉维税务局案例研究

Acknowledgement第5-7页
Abstract第7-9页
摘要第10-15页
Preface第15-22页
Chapter 1. Introduction第22-31页
    1.1 Background and Context第23-25页
    1.2 Problem Statement第25-27页
    1.3 Scope and Objective第27-28页
    1.4 Research Justification第28页
    1.5 Research Question第28-29页
    1.6 Research Methodology第29页
    1.7 Thesis Contribution第29-30页
    1.8 Thesis Outline第30-31页
Chapter 2. Literature Review第31-53页
    2.1 Anomaly Detection Techniques第31-38页
        2.1.1 Supervised Anomaly Detection第32-35页
        2.1.2 Semi-Supervised Anomaly Detection第35页
        2.1.3 Unsupervised Anomaly Detection第35-38页
    2.2 Anomaly Detection in Networking第38-39页
    2.3 Wireless Sensor Network Anomaly Detection第39-41页
    2.4 Anomaly Detection in Time Series第41-42页
    2.5 Data Based Approach第42-43页
    2.6 Model-Based Approach第43-44页
    2.7 Anomaly Detection for Large Scale Data第44-45页
    2.8 Anomaly Detection in Graph-Based Data第45-46页
    2.9 Anomaly Detection in Computer Applications System第46-50页
        2.9.1 Medical and Public Health Anomaly Detection第47页
        2.9.2 Fraud Detection第47-48页
        2.9.3 Insurance Claim Fraud Detection第48-49页
        2.9.4 Intrusion Detection第49-50页
    2.10 Reporting Anomalies第50页
    2.11 Related Study第50-53页
Chapter 3. Research Methodology第53-64页
    3.1 Research Design第53-55页
    3.2 Research Approach for Current Study第55-56页
    3.3 Preparing Data for Mining第56-60页
        3.3.1 Data Collection第56-57页
        3.3.2 Data Preparation Process第57页
        3.3.3 Normalization第57-58页
        3.3.4 Data Samples第58-60页
    3.4 Analysis Algorithms第60-62页
        3.4.1 Data Clustering第60页
        3.4.2 Advantages of Data Clustering第60-61页
        3.4.3 Cross Validation第61-62页
    3.5 Analysis Tools第62-64页
        3.5.1 Weka第63页
        3.5.2 SPSS第63-64页
Chapter 4. Detecting Anomalies in VDP第64-74页
    4.1 Understanding Value for Duty Purposes第64页
    4.2 Customs Duty第64-65页
    4.3 Calculations for VDP and Duty Applicable第65-67页
    4.4 Determinant Features for Vehicle Price and Appropriate Duty第67-68页
    4.5 Point for Anomaly Detection in the Current System第68-70页
    4.6 Current system Architecture第70-71页
    4.7 Proposed Architecture and Data Modelling第71-74页
        4.7.1 System Architecture第71-73页
        4.7.2 Data & Feature Modelling第73-74页
Chapter 5. Experiments and Results第74-96页
    5.1 Constructing Datasets for Experiments第74-76页
        5.1.2 Choosing Correct Data Attributes第74页
        5.1.3 Feature Selection第74-75页
        5.1.4 Normalization第75-76页
    5.2 Exploring Data by Statistical Analysis第76-77页
    5.3 Classification-Weka Experiments第77-87页
        5.3.1 Experiment 1: Baseline Performance Assessment第78-81页
        5.3.2 Experiment 2: J48 Tree第81页
        5.3.3 Experiment 3: Logistic Regression第81-85页
        5.3.4 Experiment 4: Decision Table第85-87页
    5.4 Choosing the Best Classifier Model第87页
    5.5 Clustering Model第87-90页
    5.6 Outlier Detection Using Interquartile Range第90-92页
        5.6.1 Visualizing the Outliers for VDP and FOB第92页
    5.7 SPSS Experiments第92-94页
    5.8 Status for Vehicle Description第94-95页
    5.9 Result Justification第95-96页
Chapter 6. Conclusion and Discussion第96-98页
    6.1 Conclusion第96-97页
    6.2 Future Work第97-98页
References第98-105页
Appendix A第105-107页
Author Profile and Research Achievements Obtained during the Study for A Master's Degree第107-109页
Dataset for the Master’s Thesis第109-110页

论文共110页,点击 下载论文
上一篇:长白山蕈菌信息库的构建
下一篇:基于自编码器的稀疏深度模型的研究与应用