首页--航空、航天论文--航空论文--各类型航空器论文--无人驾驶飞机论文

基于视觉传感器网络的微型飞行器室内定位与路径规划技术研究

作者简历第7-9页
摘要第9-15页
Abstract第15-16页
Chapter 1 Introduction第23-41页
    1.1 Background第23-26页
        1.1.1 Topic Source第23页
        1.1.2 Motivation第23-26页
    1.2 Challenges of MAV Indoor Application第26-30页
        1.2.1 Applications and Development Trend of MAV第26-29页
        1.2.2 Research Issues of MAV Indoor Application第29-30页
    1.3 Literature Review第30-39页
        1.3.1 Indoor Localization第30-35页
        1.3.2 Path Planning第35-38页
        1.3.3 Development Trend and Problems第38-39页
    1.4 Overview of Contributions第39页
    1.5 Outline of Chapters第39-41页
Chapter 2 Proposed Approach Overview第41-56页
    2.1 3-D VSN System Setup第41-45页
        2.1.1 System Architecture Design第42-43页
        2.1.2 3-D Visual Sensor Selection第43-45页
    2.2 MAV Flight Control第45-50页
        2.2.1 Hardware System Architecture第46-48页
        2.2.2 Flight Control Architecture第48-50页
    2.3 Proposed Approach Implementation第50-55页
        2.3.1 3-D Environment Reconstruction第52-53页
        2.3.2 Data Fusion Localization第53-54页
        2.3.3 Energy-Optimal Path Planning第54-55页
    2.4 Chapter Summary第55-56页
Chapter 3 3-D VSN-Based Panoramic Environment Reconstruction第56-86页
    3.1 Camera Calibration and Depth Image Preprocessing第56-66页
        3.1.1 Coordinates Establishment第56-59页
        3.1.2 Calibration第59-61页
        3.1.3 Proposed Hole Filling Algorithm第61-66页
    3.2 3-D Reconstruction Approach Flow第66-68页
        3.2.1 Point Cloud Generating第66-67页
        3.2.2 Point Cloud Registration第67-68页
    3.3 Feature Extraction and Matching第68-77页
        3.3.1 SURF Feature Extraction and Descriptor第69-75页
        3.3.2 SURF Feature Matching第75-77页
    3.4 ICP-based Transformation Estimation第77-80页
        3.4.1 Feature Merging第77页
        3.4.2 RANSAC Based Correspondence Rejection第77-79页
        3.4.3 ICP-based Transformation Estimation第79-80页
    3.5 Experimental Evaluation第80-85页
        3.5.1 Kinect Calibration第81-83页
        3.5.2 Environment Modeling第83-85页
    3.6 Chapter Summary第85-86页
Chapter 4 High-precision Data Fusion Based Localization第86-103页
    4.1 Mapping and Localization第86-89页
        4.1.1 Simultaneous Localization and Mapping第86-88页
        4.1.2 Localization with Pre-generated Maps第88页
        4.1.3 Proposed Localization Method第88-89页
    4.2 Target Detection第89-93页
        4.2.1 Image Segmentation第91页
        4.2.2 Morphological Filtering第91-92页
        4.2.3 3-D Single-view Localization第92-93页
    4.3 KCF-based Data Fusion Localization第93-97页
        4.3.1 Mathematical Description第94-95页
        4.3.2 Localization Algorithm Description第95-97页
    4.4 Experimental Evaluation第97-101页
        4.4.1 Target Detection第97-99页
        4.4.2 KCF-based Data Fusion Localization第99-101页
    4.5 Chapter Summary第101-103页
Chapter 5 Heuristic Energy-Optimal 3-D Path Planning第103-117页
    5.1 Procedure of Path Planning Approach第103-106页
    5.2 Problem Formulation第106-108页
        5.2.1 Planning Space Modeling第106-107页
        5.2.2 Dynamic Model of MAV第107-108页
    5.3 Energy Consumption Estimation and Modelling第108-111页
        5.3.1 Most Energy Efficient Speed第108-110页
        5.3.2 Energy Consumption Modeling第110-111页
    5.4 Path Planning With Motion Uncertainty第111-113页
    5.5 Simulations and Results第113-116页
        5.5.1 Simulation Settings第113-114页
        5.5.2 Performance Comparison Experiments第114-115页
        5.5.3 Grid Size Experiments第115-116页
    5.6 Chapter Summary第116-117页
Chapter 6 Conclusions and Future Work第117-121页
    6.1 Conclusions第117-119页
        6.1.1 Summary第117-118页
        6.1.2 Critical Analysis第118-119页
    6.2 Future Work第119-121页
Acknowledgements第121-123页
References第123-135页

论文共135页,点击 下载论文
上一篇:核磁共振2D地下水成像及3D正演研究
下一篇:隧道空间有限元地震波场模拟与逆时偏移成像