首页--数理科学和化学论文--数学论文--动力系统理论论文

动力系统中的度量丢番图逼近

摘要第8-9页
Abstract第9页
Preface第10-20页
    0.1 Metric Diophantine approximation第12-14页
    0.2 Nondense orbit set第14-15页
    0.3 Multifractal analysis第15-20页
Chapter 1 Quantitative recurrence properties for free semigroup actions第20-28页
    1.1 Preliminaries and main results第20-23页
    1.2 Proof of Theorem 1.1.4 and 1.1.5第23-28页
Chapter 2 Quantitative recurrence properties for systems with non-uniformstructure第28-46页
    2.1 Preliminaries and main results第28-32页
        2.1.1 Topological pressure第30-32页
    2.2 Proof of Theorem 2.1.1第32-39页
        2.2.1 Proof of upper bound第33-34页
        2.2.2 Proof of lower bound第34-39页
    2.3 Proof of Theorem 2.1.2第39-45页
        2.3.1 Proof of upper bound第39-40页
        2.3.2 Proof of lower bound第40-45页
    2.4 Applications第45-46页
Chapter 3 Topological pressure of generic points sets with non-unifromstructure第46-61页
    3.1 Preliminaries and main results第46-49页
    3.2 Proof of Theorem 3.1.2第49-59页
        3.2.1 Choose the sequence {n_j}_(j≥1)第50-51页
        3.2.2 Construction of fractal set H第51-56页
        3.2.3 To estimate the lower bound第56-59页
    3.3 Applications第59-61页
Chapter 4 Quantitative recurrence properties in the historic set for sym-bolic systems第61-84页
    4.1 Preliminaries and main results第61-65页
    4.2 Some important lemmas第65-67页
    4.3 Proof of Theorem 4.1.1第67-74页
        4.3.1 Proof of upper bound第67-68页
        4.3.2 Proof of lower bound第68-74页
    4.4 Proof of Theorem 4.1.2第74-84页
        4.4.1 Proof of upper bound第74-75页
        4.4.2 Proof of lower bound第75-84页
Chapter 5 On the topological entropy of the set with a special shadowingtime第84-107页
    5.1 Preliminaries and main results第84-87页
    5.2 Proof of Theorem 5.1.2第87-105页
        5.2.1 Upper bound for h_(top)~B(D_f~(xo))第87-89页
        5.2.2 Lower bound for h_(top)~B(D_f~(xo))第89-91页
        5.2.3 Construction of the Fractal F第91-95页
        5.2.4 Construction of a special sequence of measure μ_k第95-105页
    5.3 Applications第105-107页
Chapter 6 Non-dense orbits on topological dynamical systems第107-116页
    6.1 Preliminaries and main results第107页
    6.2 Proof of Theorem 6.1.1第107-113页
        6.2.1 Construction of the Fractal F第108-110页
        6.2.2 Construction of a special sequence of measures μ)k第110-113页
    6.3 Applications第113-116页
Bibliography第116-121页
Acknowledgements第121-122页
Publications and Preprints第122-123页
Further researches第123页

论文共123页,点击 下载论文
上一篇:关于拓扑群弱紧性的研究
下一篇:EWOD液体透镜动态响应测试与润湿机制研究