首页--工业技术论文--电工技术论文--独立电源技术(直接发电)论文--蓄电池论文

硫电极、电解质的结构优化及其对锂硫电池电化学性能的改善研究

作者简历第7-9页
摘要第9-12页
ABSTRACT第12-15页
CHAPTER 1 INTRODUCTION第19-76页
    1.1 BACKGROUND第19-22页
    1.2 A BRIEF OVERVIEW OF THE LITHIUM SULFUR BATTERY第22-29页
        1.2.1 Historical development of the lithium sulfur battery第22-23页
        1.2.2 The structure and working principle of the lithium sulfur battery第23-25页
        1.2.3 The working mechanism of the lithium sulfur battery using an ether-based liquid electrolyte第25-27页
        1.2.4 The major problems in the lithium sulfur batteries第27-29页
    1.3 THE RECENT ADVANCES IN LITHIUM SULFUR BATTERIES第29-72页
        1.3.1 The progress of the cathodes of the lithium sulfur batteries第29-48页
        1.3.2 The progress of the novel battery configurations for Li-S systems第48-59页
        1.3.3 The progress of the binders for fabricating the sulfur electrode第59-63页
        1.3.4 The progress of the electrolytes for lithium sulfur batteries第63-68页
        1.3.5 The progress of stabilizing the lithium metal anode第68-72页
    1.4 THE PURPOSE AND CONTENT OF THE RESEARCH第72-76页
CHAPTER 2 APPLICATION OF DIATOMITE AS AN EFFECTIVE POLYSULFIDES ADSORBENT FOR LITHIUM SULFUR BATTERIES第76-89页
    2.1 INTRODUCTION第76-77页
    2.2 EXPERIMENTAL第77-79页
        2.2.1 Materials第77页
        2.2.2 Preparation of sulfur cathode materials第77页
        2.2.3 Quantitative determination of the adsorption capacity of diatomite and acetylene black for polysulfides第77-78页
        2.2.4 Material characterization第78页
        2.2.5 Electrochemical measurements第78-79页
    2.3 RESULTS AND DISCUSSION第79-88页
        2.3.1 Physical properties of diatomite第79-80页
        2.3.2 The adsorption capability of the diatomite and acetylene black for Li_2S_6 solution第80-81页
        2.3.3 Physical properties of the S-AB and S-DM-AB composites第81-82页
        2.3.4 Electrochemical properties of S-AB and S-DM-AB cathodes第82-87页
        2.3.5 Observation of the cathodes and anodes of the cells with S-AB and S-DM-AB cathodes after 100 cycles at 0.5 C第87-88页
    2.4 CONCLUSIONS第88-89页
CHAPTER 3 EXPLORE THE INFLUENCE OF COVERAGE PERCENTAGE OF SULFUR ELECTRODE ON THE CYCLE PERFORMANCE OF LITHIUM SULFUR BATTERIES第89-106页
    3.1 INTRODUCTION第89-90页
    3.2 EXPERIMENTAL第90-93页
        3.2.1 Materials第90页
        3.2.2 Preparation of the pristine sulfur electrode第90-91页
        3.2.3 Preparation of the nano-Al_2O_3 incorporated composite film and the sealed sulfur electrode第91页
        3.2.4 Cell assembly第91-92页
        3.2.5 Electrochemical measurements第92页
        3.2.6 Estimation of the electrochemical double layer capacitance (EDLC) of the nano-Al_2O_3 incorporated composite film第92-93页
        3.2.7 Materials characterization第93页
    3.3 RESULTS AND DISCUSSION第93-105页
        3.3.1 XRD and TGA results第93-94页
        3.3.2 Comparison of battery performances第94-98页
        3.3.3 Electrochemical measurements of the cell with sealed sulfur electrode第98-100页
        3.3.4 Revealing the blocking effect of the sealed configuration第100-104页
        3.3.5 Insights into the sealing strategy第104-105页
    3.4 CONCLUSIONS第105-106页
CHAPTER 4 IMPROVED CYCLING STABILITY OF SULFUR ELECTRODE BY A LI-NAFION-SUPPORTED SEALED CONFIGURATION第106-122页
    4.1 INTRODUCTION第106-107页
    4.2 EXPERIMENTAL第107-111页
        4.2.1 Materials第107-108页
        4.2.2 Preparation of the lithiated Nafion membrane and H-type Nafion membrane第108页
        4.2.3 Preparation of the pristine sulfur electrode第108页
        4.2.4 Preparation of the Li-Nafion-supported composite film and the Li-Nafion-sealed sulfur electrode第108-109页
        4.2.5 Cell assembly第109页
        4.2.6 Characterizations and measurements第109-111页
    4.3 RESULTS AND DISCUSSION第111-120页
        4.3.1 FTIR spectra comparison between the casted H-type Nafion and Li-Nafion membranes第111-112页
        4.3.2 Measuring the lithium ion transference number of the casted Li-Nafion membrane第112-113页
        4.3.3 Morphology and element distribution of the Li-Nafion-supported composite film第113-114页
        4.3.4 The physical characterizations of the sulfur cathode material第114-115页
        4.3.5 Measuring the electrochemical double layer capacitance (EDLC)第115页
        4.3.6 The electrochemical performance of the batteries第115-119页
        4.3.7 Comparison of the cycling performances at 0.1 C between the Li-Nafion-supported and nano-Al_2O_3-supported sealed configuration第119-120页
    4.4 CONCLUSIONS第120-122页
CHAPTER 5 A SAFE AND LONG LIFE LITHIUM METAL-SULFUR BATTERY ENABLED BY A SINGLE ION CONDUCTING BATTERY STRUCTURE第122-143页
    5.1 INTRODUCTION第122-124页
    5.2 EXPERIMENTAL第124-131页
        5.2.1 Materials第124页
        5.2.2 Synthesis第124-127页
        5.2.3 Preparation第127-128页
        5.2.4 Cells assemblies第128-129页
        5.2.5 Characterizations and measurements第129-131页
    5.3 RESULTS AND DISCUSSION第131-141页
        5.3.1 Structural analyses of precursors and grafted polymer第131-133页
        5.3.2 Structural analyses of S@PAN第133-135页
        5.3.3 Physical & Electrochemical properties of the blend polymer electrolyte membrane第135-136页
        5.3.4 "Li | electrolyte | Li" cells for galvanostatic cycling tests第136-141页
    5.4 CONCLUSIONS第141-143页
CHAPTER 6 CONCLUSIONS第143-146页
ACKNOWLEDGEMENTS第146-147页
REFERENCES第147-162页

论文共162页,点击 下载论文
上一篇:磷酸铁锂固相扩散和四氧化三钴、三氧化二铁赝电容的行为研究
下一篇:氧化锰纳米结构基超级电容器电极材料研究