首页--数理科学和化学论文--数学论文--数学分析论文--微分方程、积分方程论文

非线性差分方程的同宿轨、周期解与边值问题

摘要第1-6页
Abstract第6-10页
第1章 绪论第10-25页
   ·问题研究的历史背景及意义第10-16页
   ·预备知识第16-19页
     ·本文通用的数学符号及基本知识第16页
     ·极小极大方法与临界点第16-19页
   ·问题的研究状态、最新进展与本文的主要工作第19-25页
第2章 离散周期非线性薛定谔方程的同宿轨第25-42页
   ·引言第25-26页
   ·方程(2.1)的同宿轨第26-35页
     ·主要结论第26-27页
     ·变分框架与基本引理第27-29页
     ·主要结论的证明第29-35页
       ·非平凡2mM-周期解的存在性第29-30页
       ·非平凡2mM-周期解范数的一致估计第30-32页
       ·非平凡2mM-周期解收敛到非平凡解第32-34页
       ·解在无穷远处指数退化第34-35页
   ·方程(2.2)的同宿轨第35-42页
     ·主要结论第35页
     ·变分框架与基本引理第35-37页
     ·主要结论的证明第37-42页
       ·非平凡2mM-周期解的存在性第37-38页
       ·非平凡2mM-周期解范数的一致估计第38-40页
       ·非平凡2mM-周期解收敛到非平凡解第40-42页
第3章 高阶非线性差分方程的同宿轨第42-66页
   ·引言第42页
   ·有周期假设条件的方程(3.1)的同宿轨第42-51页
     ·主要结论第42-43页
     ·变分框架与基本引理第43-46页
     ·主要结论的证明第46-51页
       ·非平凡2mM-周期解的存在性第46-47页
       ·非平凡2mM-周期解范数的一致估计第47-49页
       ·非平凡2mM-周期解收敛到非平凡的同宿轨第49-50页
       ·同宿轨在无穷远处指数退化第50-51页
   ·无周期假设条件的方程(3.1)的同宿轨第51-57页
     ·主要结论第51页
     ·变分框架与基本引理第51-56页
     ·主要结论的证明第56-57页
   ·无周期假设条件的方程(3.2)的同宿轨第57-66页
     ·主要结论第57-58页
     ·变分框架与基本引理第58-62页
     ·主要结论的证明第62-66页
第4章 二阶非线性差分方程的周期解第66-85页
   ·引言第66页
   ·次线性情形方程(4.1)的周期解第66-77页
     ·主要结论第66-68页
     ·变分框架与基本引理第68-73页
     ·主要结论的证明第73-77页
   ·非超线性和非次线性情形方程(4.1)的周期解第77-85页
     ·主要结论第77-78页
     ·变分框架与基本引理第78-81页
     ·主要结论的证明第81-85页
第5章 二阶非线性差分方程的边值问题第85-114页
   ·引言第85-86页
   ·在条件△u_0=A,△u_k=B下的边值问题第86-95页
   ·在条件u_0=A,u_(k+1)=B下的边值问题第95-103页
   ·在条件△u_0=A,u_(k+1)=B下的边值问题第103-108页
   ·在条件u_0=A,Au_k=B下的边值问题第108-114页
结论第114-116页
参考文献第116-130页
附录A 攻读学位期间所发表的学术论文第130-131页
致谢第131页

论文共131页,点击 下载论文
上一篇:(直觉)模糊集的相关理论及其在动力系统中的应用
下一篇:污水厂剩余污泥水解及其厌氧发酵产氢技术研究