首页--工业技术论文--轻工业、手工业论文--纺织工业、染整工业论文--一般性问题论文--纺织纤维(纺织原材料)论文

Relationship between Fiber Properties and Rotor Spun Yarn Strength

List of contents第5-8页
Abstract第8-9页
Acknowledgement第10-11页
1.Introduction第11-13页
2.Literature Review第13-24页
    2.1 Rotor Spinning System第13-20页
        2.1.1 Introduction第13-14页
        2.1.2 Rotor Spinning Mechanism第14-16页
        2.1.3 Rotor Spun Yarn Structure第16页
        2.1.4 Advantages of Rotor Spun Yarns第16-17页
        2.1.5 Disadvantages of Rotor Spun Yarns第17-18页
        2.1.6 End Use of Rotor Spun Yarns第18页
        2.1.7 Important Fiber Properties for Rotor Spinning第18-20页
            2.1.7.1.Introduction第18页
            2.1.7.2.Fiber Strength第18-19页
            2.1.7.3.Micronaire第19页
            2.1.7.4.Fiber length第19页
            2.1.7.5.Short Fiber Content第19-20页
            2.1.7.6.Conclusion第20页
    2.2.Previous studies on rotor spun yarn strength and fiber properties第20-24页
        2.2.1 Theoretical and Experimental第20-21页
        2.2.2 Mathematical Models and Regression Methods第21-24页
3.Methodology第24-56页
    3.1.Introduction of Artificial Neural Network第24-27页
        3.1.1 Processing Units第25页
        3.1.2 Connection between Elements第25页
        3.1.3 Activation and Output Rules第25-26页
        3.1.4 Network Topologies第26页
        3.1.5 Training of Artificial Neural Networks第26-27页
        3.1.6 Leaning Algorithms第27页
    3.2.Fundamental of Fuzzy Logic第27-36页
        3.2.1 Fuzzy Logic第27-33页
        3.2.2 Fuzzy Rules and Fuzzy Inference Systems第33-35页
            3.2.2.1 Fuzzy if-Then Rules第33-34页
            3.2.2.2 Fuzzy Inference Systems第34-35页
        3.2.3 Sugeno Fuzzy Model第35-36页
    3.3.Neural Fuzzy Systems第36-45页
        3.3.1 Comparisons of Fuzzy Systems and Neural networks第36-38页
        3.3.2 Adaptive Networks第38-43页
            3.3.2.1 Architecture and basic Learning Rule第38-41页
            3.3.2.2 Hybrid Leaning Rules第41-43页
        3.3.3 Adaptive Neuro-Fuzzy Inference Systems(ANFIS)第43-45页
            3.3.3.1 ANFIS Architecture第43-45页
            3.3.3.2 Computation Complexity第45页
    3.4.Support Vector Machines第45-56页
        3.4.1 Introduction第45-47页
        3.4.2 The Optimal Hyperplane第47-48页
        3.4.3 Feature Space第48-51页
        3.4.4 Kernel Functions第51-53页
            3.4.4.1 Linear Function第52页
            3.4.4.2 Polynomial Function第52页
            3.4.4.3 Gaussian Radial Basis Function第52-53页
            3.4.4.4 Multi-Layer Perceptron第53页
        3.4.5 Support Vector Non-Linear Regression第53-55页
        3.4.6 Conclusion第55-56页
4.Rotor spun yarn strength prediction第56-74页
    4.1 Introduction第56页
    4.2 Data Collection第56-57页
    4.3 ANFIS第57-67页
        4.3.1 Training Practical Considerations第57-58页
        4.3.2 Training results第58-59页
        4.3.3 Analyzing of the Impact of Fiber Properties on the Rotor Spun Yarn Strength第59-67页
            4.3.3.1 Introduction第59页
            4.3.3.2 Practical Considerations第59-62页
            4.3.3.3 Comparison of the shape of membership functions第62页
            4.3.3.4 Relationship between ANFIS output(Predicted CSP)and fiber property第62-65页
            4.3.3.5 Surface analysis(Control of yarn quality)第65-67页
    4.4 Support Vector Machines第67-70页
        4.4.1 Practical considerations第67-68页
        4.4.2 Results第68页
        4.4.3 Importance of selection of the optimization methods and number of fold cross-validation第68-69页
        4.4.4 Relative importance of fiber properties on the rotor spun yarn第69-70页
    4.5 Multiple Regressions第70-71页
        4.5.1 Practical Considerations第70页
        4.5.2 The Results第70-71页
    4.6 Comparison Analysis第71-74页
5.Conclusions第74-76页
    5.1 Summary第74页
    5.2 Recommendation for future works第74-76页
References第76-78页
Appendix第78-82页
    A.Raw data第78-79页
    B.Abbreviations第79页
    C.Glossary第79-82页

论文共82页,点击 下载论文
上一篇:光驱Tray盘用油选择的实验分析与研究
下一篇:我国不良资产证券化法律规制研究