基于人工智能算法的透镜调制传递函数测量结果优化研究
摘要 | 第4-5页 |
Abstract | 第5-6页 |
第一章 前言 | 第9-13页 |
1.1 光学系统像质评价方法概述 | 第9-10页 |
1.1.1 星点法 | 第9页 |
1.1.2 鉴别率法 | 第9-10页 |
1.1.3 几何像差法 | 第10页 |
1.1.4 光学传递函数法 | 第10页 |
1.2 光学传递函数测量技术发展史 | 第10-11页 |
1.3 人工智能优化算法概述 | 第11-12页 |
1.4 论文研究内容与意义 | 第12-13页 |
第二章 光学传递函数理论基础 | 第13-29页 |
2.1 线性系统与线性空间不变系统 | 第13-18页 |
2.1.1 线性系统数学模型 | 第13-15页 |
2.1.2 不变线性系统 | 第15-16页 |
2.1.3 光学成像系统 | 第16-18页 |
2.2 MTF物理意义 | 第18-20页 |
2.3 PSF、LSF、ESF与MTF的关系 | 第20-21页 |
2.4 MTF测量方法分析 | 第21-27页 |
2.4.1 狭缝法 | 第22-23页 |
2.4.2 刃边法 | 第23-25页 |
2.4.3 对比度法 | 第25-27页 |
2.5 联级系统的光学传递函数 | 第27-28页 |
2.6 本章小结 | 第28-29页 |
第三章 MTF光学测试系统装置及平台搭建 | 第29-49页 |
3.1 光学元件的选择 | 第29-32页 |
3.1.1 LED白色背照明光源 | 第29页 |
3.1.2 光栅选择 | 第29-30页 |
3.1.3 CMOS采集相机 | 第30-32页 |
3.2 光学系统设计搭建与测试 | 第32-40页 |
3.3 影响测量结果的因素 | 第40-48页 |
3.3.1 LED背景光源起伏及曝光时间的影响 | 第41-45页 |
3.3.2 CMOS采样参数的影响 | 第45页 |
3.3.3 COMS相机对焦位置对MTF值的影响 | 第45-48页 |
3.4 本章小结 | 第48-49页 |
第四章 基于小波神经网络的MTF值优化算法 | 第49-59页 |
4.1 基于小波神经网络的MTF值优化理论 | 第49-53页 |
4.1.1 小波神经网络模型 | 第49-50页 |
4.1.2 小波神经网络学习算法 | 第50-53页 |
4.2 基于小波神经网络计算最佳像点MTF值 | 第53-57页 |
4.3 基于小波神经网络的MTF值优化算法分析 | 第57-58页 |
4.4 本章小结 | 第58-59页 |
第五章 基于支持向量回归机的MTF值优化算法 | 第59-71页 |
5.1 支持向量机算法原理 | 第59-63页 |
5.1.1 支持向量分类机 | 第59-61页 |
5.1.2 支持向量回归机 | 第61-63页 |
5.2 基于SVM方法的MTF值优化算法 | 第63-69页 |
5.3 基于SVM方法的MTF值优化算法分析 | 第69-70页 |
5.4 本章小结 | 第70-71页 |
第六章 总结与展望 | 第71-72页 |
6.1 主要研究成果及结论 | 第71页 |
6.2 研究展望 | 第71-72页 |
参考文献 | 第72-76页 |
致谢 | 第76-77页 |
在学期间公开发表论文及著作情况 | 第77页 |