首页--数理科学和化学论文--计算数学论文--数值分析论文--微分方程、积分方程的数值解法论文--常微分方程的数值解法论文

Numerical Algorithms Based on Block Multistep Methods for Solutions of Stiff Ordinary Differential Equations

Abstract第5页
摘要第6-7页
Content第7-9页
Chapter 1 Introduction第9-18页
    1.0.第10-17页
        1.0.1 STATEMENT OF THE PROBLEM第10-11页
        1.0.2 OBJECTIVES第11页
        1.0.3 Stiff Differential Equation第11-15页
        1.0.4 Where Stiff Problem Occur第15页
        1.0.5 Characteristics of the stiff Problem第15页
        1.0.6 Difficulties in Solving Stiff Problems第15-16页
        1.0.7 Effectiveness of Algorithms In The Solution Process第16-17页
    1.1 Step size Control第17-18页
Chapter 2 Literature Review第18-34页
    2.0 Numerical methods第18-27页
        2.0.1 One-Step Methods第18页
        2.0.2 Taylor Series Methods第18-19页
        2.0.3 Runge-kutta methods第19-20页
        2.0.4 Extrapolation Methods第20页
        2.0.5 Linear Multistep Methods第20-23页
            2.0.5.1 Stability of Linear Multistep Method第21-23页
        2.0.6 Adams method第23-25页
        2.0.7 Backward Differentiation Formula (BDF)第25-26页
        2.0.8 Hybrid Methods第26-27页
        2.0.9 Blended Linear Multstep Methods第27页
        2.0.10 Extended Multistep methods第27页
    2.1 Block multistep methods第27-29页
    2.2 Approximation, Collocation and interpolation第29-34页
        2.2.1 Collocation and interpolation Techniques第30-31页
        2.2.2 Existence and Uniqueness of solution第31页
        2.2.3 Interpolation method第31-32页
        2.2.4 Characteristics of interpolation methods第32页
        2.2.5 Polynomial interpolation第32-34页
Chapter 3 Block Adams-Type Method With Continuous Coefficients第34-49页
    3.1 Block implicit Adams Type Method with continuous coefficients第36-49页
        3.1.1 Derivation of Block implicit Adams method第36-42页
            3.1.1.1 Example of Adam’s type Case k= 2第37-39页
            3.1.1.2 Example of Adam’s type k 3第39-42页
        3.1.2 Analysis of continuous Adam’s type block methods第42-49页
            3.1.2.1 Local truncation error第42-44页
            3.1.2.2 Zero Stability第44-45页
            3.1.2.3 Consistency and Convergence第45页
            3.1.2.4 Stability Analysis第45页
            3.1.2.5 Stability examples of the block Adam’s type methods第45-49页
Chapter 4 Block Backward Differentiation Formula With Continuous Coefficients第49-60页
    4.1第49-54页
        4.1.1 Derivation of the method第49-50页
        4.1.2 Example of the block BDF for Case k 2第50-51页
        4.1.3 Example of the block BDF for Case k 3第51-54页
    4.2 Analysis of block backward formula with continuous coefficients第54-60页
        4.2.1 Local truncation error第54-56页
        4.2.2 Stability Analysis第56-57页
            4.2.2.1 Zero Stability第56页
            4.2.2.2 Consistency and Convergence第56-57页
            4.2.2.3 Linear Stability第57页
        4.2.3 Stability examples of the block BDFs第57-60页
Chapter 5 Block Hybrid Method With Continuous Coefficients第60-79页
    5.1 Block Hybrid Method第60-64页
        5.1.1 Derivation of the method第60-61页
        5.1.2 Analysis block hybrid method第61-64页
            5.1.2.1 Local truncation error第62-63页
            5.1.2.2 Zero-stability for block hybrid method第63-64页
            5.1.2.3 Linear stability第64页
    5.2 Example of block hybrid method with continuous coefficients第64-66页
        5.2.1 Example of block hybrid method case k=2 with four off-step points第64-66页
    5.3 Analysis of the two step block hybrid method with four off-step points第66-68页
        5.3.1 Local Truncation error第67页
        5.3.2 Stability Analysis第67-68页
    5.4 Extension to second order method第68-79页
        5.4.1 Derivation of the method第69-71页
        5.4.2 Analysis of the second order method第71-73页
            5.4.2.1 Local truncation error第71-72页
            5.4.2.2 Zero Stability第72-73页
            5.4.2.3 Linear Stability第73页
        5.4.3 Example of the second order hybrid method第73-79页
            5.4.3.1 Analysis for the specified hybrid method第75-76页
            5.4.3.2 Zero stability第76-78页
            5.4.3.3 Consistency and Convergence第78页
            5.4.3.4 Stability analysis第78-79页
Chapter 6 Implementation And Numerical Results第79-92页
    6.1 Implementation Algorithm第79-82页
    6.2 Matlab Code Guassian elimination with partial pivoting第82-83页
    6.3 Matlab Code Newton method第83-84页
    6.4 Result of numerical experiment第84-92页
Conclusion第92-93页
APPENDIX Ⅰ第93-110页
APPENDIX Ⅱ第110-117页
References第117-125页
Publications第125-126页
Acknowledgement第126页

论文共126页,点击 下载论文
上一篇:下颌和颞下颌关节运动影像和运动轨迹的建立及临床初步应用
下一篇:两种自发性视网膜退行性变动物的形态学研究